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Abstract. Quasi MV-algebras are a generalization of MV-algebras and they are moti-

vated by the investigation of the structure of quantum logical gates. In the first part,

we present relationships between ideals, weak ideals, congruences, and perfectness within

MV-algebras and quasi MV-algebras, respectively. To achieve this goal, we provide a com-

prehensive characterization of congruence relations of a quasi MV-algebra A concerning

the congruence relations of its MV-algebra of regular elements of A, along with specific

equivalence relations concerning the complement of the set of regular elements. In the

second part, we concentrate on perfect quasi MV-algebras. We present their representa-

tion by symmetric quasi �-groups, a special kind of quasi �-groups. Moreover, we establish

a categorical equivalence of the category of perfect quasi MV-algebras, the category of

n-perfect quasi MV-algebras, and the category of symmetric quasi �-groups.
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1. Introduction

Today, the exploration of algebraic structures related to logic is invaluable.
These investigations empower us to analyze the associated logic using alge-
braic tools and facilitate the resolution of intricate problems. Additionally,
we can study the logical aspects and also applications of well-known objects
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of these algebraic structures. In this point of view, MV-algebras were intro-
duced by Chang [4] as an algebraic counterpart of infinite-valued �Lukasiewicz
logic.

Quasi MV-algebras were introduced in [18] as a generalization of MV-
algebras. Notably, a quasi MV-algebra, originating from quantum computa-
tional logic, serves as an algebraic model characterizing the set of all density
operators of the Hilbert space C

2, equipped with an appropriate array of
quantum logical gates. In contrast to classical computation, quantum com-
putation [22] permits parallel representation of two atomic information bits.
Over the past decade, numerous researchers have devoted their efforts to
studying and exploring this algebraic structure.

Ledda et al., [18], scrutinized quasi MV-algebras from a purely abstract
perspective within the framework of the universal algebra. Their work estab-
lished that every quasi MV-algebra can be embedded into the direct product
of an MV-algebra and a flat quasi MV-algebra. Additionally, they demon-
strated a completeness result in relation to a standard quasi MV-algebra
over the complex numbers. Giuntini et al., [14], studied a generalization of
quasi MV-algebras through the incorporation of a genuine quantum unary
operator denoted by

√′. Algebraic, categorical, and logical aspects of these
new structures have been studied in a series of papers [2,12,16,23]. They es-
tablished the finite model property and the congruence extension property
providing semisimple and free algebras descriptions in both the varieties
of quasi MV-algebras and

√′ quasi MV-algebras. Subsequently, they of-
fered representations for quasi MV-algebras utilizing MV-algebras enriched
with additional structure. They also verified the lattices of subvarieties of
quasi MV-algebras and demonstrated that quasi MV-algebras, along with
Cartesian and flat

√′ quasi MV-algebras, possess the amalgamation prop-
erty. Kowalski and Paoli in [16] investigated these varieties’ structure theory.
They supplied a representation of semisimple

√′ quasi MV-algebras in terms
of function algebras. Freytes and Ledda [12] introduced quasi �-groups and
established a categorical duality between quasi MV-algebras and quasi �-
groups with strong units.

In [3], logics stemming from quasi Wajsberg algebras were investigated.
The study included the proof of completeness results for each of these logics
along with the classification of deductive filters and reduced matrices. The
results were extended for the logic arising from

√′ quasi MV-algebras in
[24].

Chen and Dudek [5,6], introduced a non-commutative generalization of
quantum computational algebras, termed quasi pseudo MV-algebras. They
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explored fundamental properties and derived essential algebraic results for
this new class of algebras, and investigated ideals and congruences in a quasi
pseudo MV-algebra. Chen and Davvaz [7] characterized commutative quasi
pseudo MV-algebras and examined the relationship between Archimedean
quasi pseudo MV-algebras and commutativity. Additionally, they endeav-
ored to classify local and perfect quasi pseudo MV-algebras.

The paper presents new results extending our knowledge about quasi
MV-algebras. The aims of our research are:

• Investigation of weak ideals on quasi MV-algebras.

• Characterization and decomposition of (prime) congruences on quasi
MV-algebras.

• Relationship between ideals of a quasi MV-algebra A and congruences
on the MV-algebra R(A) of regular elements of A.

• Study of perfect quasi MV-algebras.

• Representation of perfect quasi MV-algebras.

• Categorical equivalence of perfect quasi MV-algebras.

• Categorical equivalence of n-perfect quasi MV-algebras, n ≥ 1.

This paper is organized as follows: Sect. 3 focuses on investigating (prime)
congruences and weak ideals, departing from the conventional study of
(prime) ideals and ideal congruences in the general case. We endeavor to
establish relationships between congruences and ideal congruences in quasi
MV-algebras. In addition, we show that each congruence relation of a quasi
MV-algebra A decomposes into three relations θ1, θ2 and θ3, where the first
one is a congruence relation of the MV-algebra R(A), the second one is an
equivalence relation and the third one is a type of connection between θ1 and
θ2 with some special properties. Every such relation provides a congruence
relation on A. Specifically, we demonstrate the existence of a one-to-one
correspondence between the set of all ideals of A and the set of ideals of
the MV-algebra R(A). Additionally, we characterize weak ideals of a quasi
MV-algebra A through the lens of ideals in the MV-algebra R(A).

Section 4 extends the investigation of perfect quasi MV-algebras, build-
ing upon the groundwork laid in [7]. Our focus centers on exploring the
connection between a perfect quasi MV-algebra A and its corresponding
MV-algebra R(A). Our analysis establishes that A achieves perfection if
and only if R(A) is a perfect MV-algebra. This crucial insight guides us
in deriving a representation of perfect quasi MV-algebras. The categorical
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equivalence of the category of perfect quasi MV-algebras with a special cat-
egory of symmetric quasi �-groups is presented in Sect. 5. In Section 6, we
study n-perfect quasi MV-algebras together with the categorical equivalence.

2. Preliminaries

This section encompasses fundamental concepts about quasi MV-algebras,
which will be employed in subsequent sections.

MV-algebras have been introduced in [4]. Today, we use the following
simple axioms: An algebra M = (M ; ⊕,′ , 0, 1) of type (2, 1, 0, 0) is an MV-
algebra provided that (M ; ⊕, 0) is a commutative monoid with the neutral
element 0 and for all x, y ∈ M :

(i) x′′ = x;

(ii) x ⊕ 1 = 1;

(iii) x ⊕ (x ⊕ y′)′ = y ⊕ (y ⊕ x′)′.

There is a well-known one-to-one relation between MV-algebras and uni-
tal Abelian �-groups (G, u) with a fixed strong unit u of G, [21]: Let Γ(G, u)
be the interval [0, u] in the �-group G. We endow the interval with opera-
tions of the truncated sum x ⊕ y = (x + y) ∧ u and the negation x′ = u − x,
x, y ∈ [0, u]. Then Γ(G, u) = {[0, u];⊕,′ , 0, u) is a prototypical example
of MV-algebras, with a famous categorical equivalence of Mundici [8,21],
(G, u) ↔ Γ(G, u).

Definition 2.1. [18] A quasi MV-algebra is an algebraic structure A =
(A; ⊕′, 0, 1) of type (2, 1, 0, 0) which satisfies the following identities:

(Q1) x ⊕ (y ⊕ z) = x ⊕ (z ⊕ y);

(Q2) x′′ = x;

(Q3) x ⊕ 1 = 1;

(Q4) x ⊕ (x ⊕ y′)′ = y ⊕ (y ⊕ x′)′;

(Q5) (x ⊕ 0)′ = x′ ⊕ 0;

(Q6) (x ⊕ y) ⊕ 0 = x ⊕ y;

(Q7) 0′ = 1.

On a quasi MV-algebra A, three additional binary operations listed below
are considered.

x � y := (x′ ⊕ y′)′, x ∨ y := x ⊕ (x ⊕ y′)′, x ∧ y := (x′ ∨ y′)′.
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The relation ≤ on a quasi MV-algebra A, defined by x ≤ y if and only if
x′ ⊕ y = 1, is a pre-order relation on A, that is, a relation which is reflexive
and transitive but not necessarily anti-symmetric. It is not difficult to prove
that x ≤ y iff x ∧ y = x ⊕ 0 iff x ∨ y = y ⊕ 0 iff x′ ⊕ y = 1 (see [5,18]). Due
to [18, Lem 6], the operation ⊕ is associative, commutative, x ⊕ x′ = 1 and
0⊕ 0 = 0. Trivially, a quasi MV-algebra A = (A; ⊕,′ , 0, 1) is an MV-algebra
iff it satisfies the equation x ⊕ 0 = x. We define A ⊕ 0 := {a ⊕ 0: a ∈ A}.
Then A⊕0 = 0⊕A := {0⊕a : a ∈ A}, and algebras A⊕0 = (A⊕0; ⊕,′ , 0, 1)
and 0 ⊕ A = (0 ⊕ A; ⊕,′ , 0, 1) are identical MV-algebras.

For any integer n ∈ N and any x of a quasi MV-algebra A, we can define
1.x = x, 2.x = x⊕x and n.x = (n−1).x⊕x, 2 ≤ n. In a dual way, we define
xn. The order of an element x ∈ A, in symbols ord(x), is the least integer
n ∈ N such that n.x = 1. If no such n exists, then ord(x) = ∞.

Moreover, according to [18], a quasi MV-algebra A is called: (1) linear if
it is linear concerning this relation which means that x ≤ y or y ≤ x, for all
x, y ∈ A; (2) flat if 0 = 1. An element x ∈ A is said to be regular if x = 0⊕x.
The set of all regular elements of A is denoted by R(A) = {x ∈ A : x = 0⊕x}.
According to [18, Lem 15], R(A) is a subalgebra of A and also an MV-
algebra. It is clear that A ⊕ 0 = 0 ⊕ A = R(A). In addition, a quasi MV-
algebra A is said to be proper if A is not an MV-algebra, equivalently ≤ is
not a partial order relation, or R(A) is a proper subset of A.

A non-empty subset I of A is an ideal of A if (1) 0 ∈ I, (2) I is closed
under ⊕, and (3) I =↓ I, where ↓ I = {x ∈ A : x ≤ a, ∃a ∈ I}. A weak
ideal is a non-empty subset I of A that satisfies conditions (1), (2), and (3’)
x � y ∈ I for all x ∈ A and y ∈ I. The set of all ideals and weak ideals of
A is denoted by Id(A) and Idw(A), respectively. Clearly, Id(A) ⊆ Idw(A)
(see [18]).

According to [7], a proper ideal I of a quasi MV-algebra A is said to be

(i) maximal if for each ideal J of A, I ⊆ J ⊆ A implies that I = J or
J = A,

(ii) prime if J ∩ K = I implies that I = J or I = K for all ideals J and K
of A,

(iii) perfect if (1) for each x, y ∈ A and n ∈ N, (x � y)n ∈ I implies that
xm ∈ I or ym ∈ I for some m ∈ N; (2) for each x ∈ A there exists
m ∈ N such that xm ∈ I ⇔ (x′)n /∈ I for some n ∈ N.

Denote by Max(A) and Spec(A) the set of maximal ideals and all prime
ideals of A, respectively. Maximal and prime weak ideals are defined simi-
larly to one’s ideals.
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A is said to be local if it has a unique maximal ideal. A local quasi
MV-algebra A is called perfect if for each x ∈ A, ord(x) < ∞ implies that
ord(x′) = ∞ (see [7]).

If θ is a congruence relation on a quasi MV-algebra A, then for each x ∈ A,
the equivalence class of x is denoted by x/θ, and the set A/θ = {x/θ : x ∈ A},
with the operations inherited from A, forms a quasi MV-algebra denoted by
A/θ.

In addition, if I is an ideal of A, then θI = {(x, y) ∈ A2 : x�y′, y�x′ ∈ I}
is a congruence relation on A, and A/θI is simply presented by A/I. A
congruence relation θ is said to be an ideal congruence if for each x, y ∈ A,
(0⊕x, 0⊕y) ∈ θ implies that (x, y) ∈ θ (by [18, Sec 3.3], not every congruence
is an ideal congruence).

By [18], on each quasi MV-algebra A, the following relations are congru-
ence relations:

(a, b) ∈ χ ⇔ a ≤ b, b ≤ a, (a, b) ∈ τ ⇔ a = b or a, b ∈ R(A). (2.1)

Furthermore, A/χ is an MV-algebra and A/τ is a flat quasi MV-algebra
(that is, 0 = 1).

Definition 2.2. [12] A quasi �-group is an algebra (G; +,∨,∧,−, 0) of type
(2, 2, 2, 1, 0) satisfying the following conditions, where G + 0 := {x + 0: x ∈
G}:

(Ql1) (G + 0; +,∨,∧,−, 0) is an Abelian �-group;
(Ql2) x + (−x) = 0;
(Ql3) −(−x) = x;
(Ql4) −(x + 0) = −x + 0;
(Ql5) x + y = (x + 0) + (y + 0);
(Ql6) x ∨ y = (x + 0) ∨ (y + 0);
(Ql7) x + (y ∨ z) = (x + y) ∨ (x + z). On each quasi �-group, the relation

x ≤ y iff x ∧ y = 0 + x is a pre-order relation. In addition, x + y = y + x for
all x, y ∈ G, and if we define |x| = x∨−x, x ∈ G, then |x| = |x+0|, see [12,
Lem 3.1].

Lemma 2.3. An algebra (G; ∨,∧, +,−, 0) of type (2, 2, 2, 1, 0) is a quasi �-
algebra iff it satisfies (Ql1)–(Ql6). Hence, condition (Ql7) in the definition
of quasi �-groups is superfluous.

Proof. Suppose that (Ql1)–(Ql6) hold. We need to prove (Ql7). Choose
x, y, z ∈ G. By (Ql1), (0 + y) ∨ (0 + z) ∈ 0 + G, so by (Ql6) y ∨ z ∈ 0 + G,
consequently,

0 + (y ∨ z) = y ∨ z = (0 + y) ∨ (0 + z), ∀y, z ∈ G. (2.2)
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It follows from (Ql5) that

x + (y ∨ z) = (0 + x) + (0 + (y ∨ z)), by (Ql5)

= (0 + x) + ((0 + y) ∨ (0 + z)), by (2.2)

= ((0 + x) + (0 + y)) ∨ ((0 + x) + (0 + z)), by (Ql1)

= (x + y) ∨ (x + z), by (Ql5).

The proof of the converse is clear.

According to [12], a quasi unit on a quasi �-group (G; +,∨,∧,−, 0) is a
mapping u : G → G satisfying the following conditions: (i) 0 ≤ u(0); (ii)
u(x + 0) = u(0) − x; (iii) if 0 ≤ x ≤ u(0), then u(0) − u(x) = 0 + x; (iv)
u(u(x)) = x. We define u0 := u(0). Every quasi �-group G admits a quasi
unit, e.g. u(x) := −x if x �= 0 and u(x) = 0 for x �= 0. If a ≥ 0, then
ua(x) = a − x is a quasi unit of G.

A quasi unit u on a quasi �-group G is said to be strong iff for each x ∈ G,
there is an integer n ≥ 0 such that |x| ≤ nu0. A couple (G, u), where G is a
quasi �-group with a fixed strong quasi unit u, is called bounded iff for each
x ∈ G \ (G + 0), we have −u(0) ≤ x ≤ 0 or 0 ≤ x ≤ u(0).

If u is a quasi unit on a quasi �-group G, then Γq(0, u) := ([0, u0];⊕,′ , 0, u0),
where x ⊕ y = u0 ∧ (x + y), x′ = u(x), is an orthodox example of quasi MV-
algebra, see [12, Prop 2.13]. In addition, [12, Thm 4.7] says that the category
whose objects are couples (G, u), where (G, u) is a bounded quasi �-group
with is a fixed strong quasi unit u of G, and whose arrows f : (G1, u1) →
(G2, u2) are homomorphisms of quasi �-groups satisfying f(u1(0)) = u2(0),
is categorically equivalent to the category of quasi MV-algebras with the
functor (G, u) �→ Γq(G, u).

3. Congruences and (Weak) Ideals of Quasi MV-Algebras

Recall that a congruence θ of a quasi MV-algebra A is an ideal congruence iff
I := 0/θ is an ideal. In addition, θ = θI = {(x, y) ∈ A×A : x′ �y, y′ �x ∈ I}
(see [18, Sec 3.3]). On the other hand, according to [17] for each ideal I of a
quasi MV-algebra A, the quotient structure A/I is an MV-algebra (see also,
[6, Thm 3.12]). Hence, θ is an ideal congruence iff A/I is an MV-algebra. For
example, the congruence relation χ defined in (2.1) is an ideal congruence
related to the ideal I = {x ∈ A : x ≤ 0 ≤ x}. So, ideal congruences are a
very special case of congruences on quasi MV-algebras.

In this section, we examine (prime) congruences and weak ideals instead
of (prime) ideals and ideal congruences in the general case. We present



A. Dvurečenskij , O. Zahiri

relations between congruences and ideal congruences of quasi MV-algebras.
We show a one-to-one correspondence between the set of all ideals of A and
the set of all ideals of the MV-algebra R(A). We characterize weak ideals
of a quasi MV-algebra A by ideals of the MV-algebra R(A). The results of
this section will be used in the next section.

Definition 3.1. A congruence relation θ �= ∇ := A × A of a quasi MV-
algebra A is said to be prime if A/θ is linear. The set of all prime congruence
relations of A is denoted by Conp(A).

Example 3.2. Given a proper quasi MV-algebra A, the congruence relation
τ from (2.1) is prime, since τ �= ∇ and A/τ is a flat quasi MV-algebra which
is linear.

Furthermore, if A is linear, then each congruence relation of A is prime.

We can easily prove that an ideal congruence θ is prime iff 0/θ is a prime
ideal in the sense of [6]. In Proposition 3.5 and Corollary 3.6, we will show
how we can create a prime congruence on A using a prime congruence of
R(A).

Proposition 3.3. Let A be a quasi MV-algebra. Then
⋂

Conp(A) = Δ.

Proof. Let A be an arbitrary quasi MV-algebra. According to [8, Thm
1.3.3], the intersection of all prime ideals of R(A) is the zero ideal. For each
prime ideal I of R(A), θI is a congruence relation of the MV-algebra R(A).
Set θI := θ ∪ Δ, where Δ = {(x, x) : x ∈ A}. We assert θI is a congruence
on A: For each (x, y) ∈ θI and a ∈ A by (Q6), we have (x ⊕ a, y ⊕ a) =
((0⊕x)⊕(a⊕a), (0⊕y)⊕(0⊕a)) ∈ θI ⊆ θI . By definition of θI , x, y ∈ R(A)
or x = y. If x, y ∈ R(A), then x′, y′ ∈ R(A) and (x′, y′) ∈ θI ⊆ θI . If x = y,
then clearly, (x′, y′) = (x′, x′) ∈ θI .

Let x/θI , y/θI ∈ A/θI . Then (0 ⊕ x)/θI ≤ (0 ⊕ y)/θI or (0 ⊕ y)/θI ≤
(0⊕x)/θI . Assume that the first one holds. By definition of θI , (0⊕x)/θI ≤
(0 ⊕ y)/θI , consequently, by [18], x/θI ≤ (0 ⊕ x)/θI ≤ (0 ⊕ y)/θI ≤ y/θI .
Hence, θI ∈ Conp(A). Analogously we proceed with the second case.

From [8, Prop 1.2.6] and [8, Thm 1.3.3], it follows that
⋂{θI : I is a prime

ideal of R(A)} = Δ. Therefore,
⋂

Conp(A) = Δ.

Remark 3.4. (i) Proposition 3.3 provides another proof for [18, Thm 59],
which showed that each quasi MV-algebra is a subdirect product of linear
quasi MV-algebras. In addition, it proves that for each pair x, y of distinct
elements of a quasi MV-algebra A, there exists a prime congruence relation
θ such that (x, y) /∈ θ.
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(ii) If A is a proper quasi MV-algebra, then none of the congruence
relations θI , in the proof of Proposition 3.3, is an ideal congruence. So,
the intersection of such prime congruence relations θI of A is equal to Δ =
{(x, x) : x ∈ A}. Consequently, A is a subdirect product of proper linear
quasi MV-algebras.

(iii) θ ∈ Con(A) is prime iff θ ∩ R(A)2 is a prime congruence of the
MV-algebra R(A). The proof is similar to one of Proposition 3.3.

To make computations easier, for each a ∈ A and each subset X ⊆ A, we
define:

Sa := {x ∈ A : x ≤ a ≤ x}, SX :=
⋃

{Sx : x ∈ X}. (3.1)

Proposition 3.5. The following statements hold on each quasi MV-algebra
A:

(i) For each I ∈ Id(A), there exists a unique ideal J of R(A) such that I =
∪x∈Jx/χ =↓J , where J = 0 ⊕ I. Moreover, Id(A) = {↓I : I is an ideal
of R(A)}.

(ii) For each weak ideal J of A, 0 ⊕ J is an ideal of R(A). In addition, if
I is an ideal of R(A) and SI =

⋃
a∈0⊕J Sa, then I ∪ X is a weak ideal

of A for each X ⊆ SI .
(iii) Let θ be a congruence relation of R(A) and x ∈ A \ R(A). For each

y ∈ S0⊕x \ R(A) the set

θx,y := θ ∪ {(x, y), (y, x), (x′, y′), (y′, x′)} ∪ Δ, if (0 ⊕ x)′ �= 0 ⊕ x,

θx,y := θ ∪ {(x, y), (y, x), (x′, y′), (y′, x′), (y, y′), (y′, y)} ∪ Δ, if (0 ⊕ x)′ = 0 ⊕ x.

is a congruence relation on A.

Proof. (i) Let I be an ideal of A. The proof is straightforward by [16, Lem
15]. It suffices to set J = 0⊕ I. In addition, the map f : Id(R(A)) → Id(A),
defined by f(J) =↓J , is a bijection preserving the inclusion map.

(ii) The proof follows from [16, Thm 18].
(iii) Similarly to the proof of Proposition 3.3, θ = θ ∪ Δ is a congruence

relation on A. First, assume that 0⊕x �= 0⊕x′ and y ∈ S0⊕x. By definition,
θx,y is reflexive and symmetric. In addition, x′ �= x and y′ �= y, otherwise,
x = x′ implies that (0 ⊕ x)′ = 0 ⊕ x′ = 0 ⊕ x which is absurd. Similarly,
y = y′ implies that 0 ⊕ x = (0 ⊕ x)′, since y ∈ S0⊕x and so 0 ⊕ x = 0 ⊕ y.
It follows that θx,y is transitive. Let (a, b) ∈ θx,y and c ∈ A. If (a, b) ∈ θ,
then (a ⊕ c, b ⊕ c) ∈ θ ⊆ θx,y. Otherwise, a, b ∈ {x, y} or a, b ∈ {x′, y′}. In
the first case, by (Q6), (a ⊕ c, b ⊕ c) = ((0 ⊕ x) ⊕ (0 ⊕ c), (0 ⊕ y) ⊕ (0 ⊕ c)) =
((0 ⊕ x) ⊕ (0 ⊕ c), (0 ⊕ x) ⊕ (0 ⊕ c)) ∈ θ ⊆ θx,y. In the second case, by (Q5)
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0 ⊕ a = 0 ⊕ b = (0 ⊕ x)′ and by (Q6), (a ⊕ c, b ⊕ c) = ((0 ⊕ a) ⊕ (0 ⊕ c), (0 ⊕
b) ⊕ (0 ⊕ c)) = ((0 ⊕ x)′ ⊕ (0 ⊕ c), (0 ⊕ x)′ ⊕ (0 ⊕ c)) ∈ θ ⊆ θx,y. Clearly,
θx,y is compatible with the unary operation ′. Therefore, θ is a congruence
of A. The proof remains valid even when x′ �= x and y′ �= y acknowledge
the possibility of 0 ⊕ x = (0 ⊕ x)′. In addition, θx,y is the least congruence
of A containing θ and (x, y).

Now, let x′ = x. Then if α is a congruence relation of A such that θ ⊆ α
and (x, y) ∈ α, then (y, x′) = (y, x) ∈ α and (x′, y′) ∈ α, which imply
(y, y′) ∈ α. Similarly to the first part of the current proof, we can show that
θx,y is a congruence relation of A.

Corollary 3.6. Consider the notation from Proposition 3.5.
(i) For each x, y ∈ A, θx,y is an atom in Con(A). In addition, for each

β ∈ Con(A), there is a congruence θ = β ∩ R(A)2 of R(A) such that β is
generated by {θx,y : x, y ∈ X} for a suitable subset X ⊆ A \ R(A).

(ii) θx,y is a prime congruence of A if and only if θ is a prime congruence
of R(A).

Proof. (i) It follows from Proposition 3.5.
(ii) It follows from Remark 3.4(iii).

In Proposition 3.5 and Corollary 3.6, we derived atoms of the poset
(Con(A),⊆). At the end of this section, we aim to fully characterize con-
gruences of a quasi MV-algebra A using congruences of the MV-algebra
R(A).

Theorem 3.7. Let C(A) = A \ R(A), θ1 and θ2 be relations on A, and a
one-to-one map f : X → C(A)/θ2, where X ⊆ R(A)/θ1. We assume the
following properties:

(P1) θ1 ∈ Con(R(A)).

(P2) θ2 ⊆ ⋃
a∈R(A)(Sa/θ1 × Sa/θ1).

(P3) θ2 is an equivalence relation on C(A) such that θ′
2 = θ2, where θ′

2 =
{(x′, y′) : (x, y) ∈ θ2}.

(P4) X ′ = X, f(x/θ1) ∈ (Sx/θ1)/θ2, f preserves ′, where we denoted f(x/θ1)
by yx/θ1, and yx ∈ Sx/θ1 is a non-regular element of A.

Then θ :=
⋃3

i=1 θi is a congruence relation on A, where

θ3 :=
( ⋃

x/θ1∈X

(x/θ1 × f(x/θ1))
)

∪
( ⋃

x/θ1∈X

(f(x/θ1) × x/θ1)
)



Some Results on Quasi MV-Algebras and Perfect...

=
( ⋃

x/θ1∈X

(x/θ1 × yx/θ2)
)

∪
( ⋃

x/θ1∈X

(yx/θ2 × x/θ1)
)
.

Proof. If x ∈ R(A), then (x, x) ∈ θ1 ⊆ θ, and if x ∈ C(A), then (x, x) ∈
θ2 ⊆ θ, implying that θ is reflexive. Also, θ1, θ2, and θ3 are symmetric, and
the same holds true for θ.

(i) We note that if (x, y) ∈ θ3, there exists a/θ1 ∈ X such that (x, y) ∈
a/θ1 × ya/θ2 or (y, x) ∈ a/θ1 × ya/θ2, where ya ∈ Sa/θ1 ∩ C(A). In the
first case, x/θ1 = a/θ1 and y/θ2 = ya/θ2, which means x/θ1 ∈ X and
f(x/θ1) = y/θ2. Similarly, if (y, x) ∈ a/θ1 × ya/θ2, then y/θ1 = a/θ1 ∈ X,
and f(y/θ1) = ya/θ2 = x/θ2. Moreover, by (P2) and (P4), (y, ya) ∈ θ2
implies that 0 ⊕ yθ10 ⊕ ya ∈ a/θ1, since ya ∈ Sa/θ1 , consequently, y ∈
Sa/θ1 \ R(A). Summing up,

(x, y) ∈ θ3 ⇔
(
x/θ1 ∈ X, y ∈ C(A), f(x/θ1) = y/θ2

)
or

(
y/θ1 ∈ X,x ∈ C(A), f(y/θ1) = x/θ2

)
. (3.2)

Choose (x, y), (y, z) ∈ θ.
(ii) If (x, y), (y, z) ∈ θ1 ∪ θ2, then (x, z) ∈ θ1 ∪ θ2 ⊆ θ. Note that it is

impossible for (x, y) ∈ θi and (y, z) ∈ θj to hold simultaneously for distinct
elements i, j ∈ {1, 2}, since R(A) ∩ C(A) = ∅.

(iii) Let (x, y), (y, z) ∈ θ3. If x ∈ C(A), then by (i), y/θ1 ∈ X, z ∈ C(A)
and x/θ2 = f(y/θ1) = z/θ2, that is (x, z) ∈ θ2 ⊆ θ. Also, y ∈ C(A)
implies that x/θ1, z/θ1 ∈ X and f(x/θ1) = y/θ2 = f(z/θ1), consequently,
x/θ1 = z/θ1, since f is one-to-one. Hence (x, z) ∈ θ1 ⊆ θ.

(iv) Suppose that (x, y) ∈ θ1 and (y, z) ∈ θ3. Then y ∈ R(A), so by
(i), z ∈ C(A), y/θ1 ∈ X, and z/θ2 = f(y/θ1) = f(x/θ1). Hence, by (3.2),
(x, z) ∈ θ3 ⊆ θ. Similarly, if (y, z) ∈ θ1 and (x, y) ∈ θ3, then y ∈ R(A), x ∈
C(A), f(z/θ1) = f(y/θ1) = x/θ2, due to (3.2), we get that (x, z) ∈ θ3 ⊆ θ.

(v) If (x, y) ∈ θ2 and (y, z) ∈ θ3, then y ∈ C(A), so by (i), z/θ1 ∈ X, and
f(z/θ1) = y/θ2 = x/θ2. Now, (3.2) implies that (x, z) ∈ θ3 ⊆ θ. If (x, y) ∈ θ3
and (y, z) ∈ θ2, then similarly, y ∈ C(A), x/θ1 ∈ X, and f(x/θ1) = y/θ2 =
z/θ2. Hence by (3.2), (x, z) ∈ θ3 ⊆ θ.

From (ii)–(v), we conclude that θ is transitive.
(vi) If (x, y) ∈ θ1 ∪ θ2, then by (P1) and (P3), (x′, y′) ∈ θ1 ∪ θ2 ⊆ θ.

Suppose that (x, y) ∈ θ3. If y ∈ C(A), then by (i), x/θ1 ∈ X and f(x/θ1) =
y/θ2. From (P4) it follows that f(x′/θ1) = f(x/θ1)′ = y′/θ2. So, by (3.2),
(x′, y′) ∈ θ3 ⊆ θ. For the case x ∈ C(A), in a similar way, we can show that
(x′, y′) ∈ θ3 ⊆ θ. Hence θ is compatible with ′.

(vii) Now, let (x, y) ∈ θ and z ∈ A be given.
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(1) If (x, y) ∈ θ1, then by (Q6), (x⊕z, y ⊕z) = (x⊕ (0⊕z), y ⊕ (0⊕z)) ∈
θ1 ⊆ θ (since 0 ⊕ z ∈ R(A)).

(2) If (x, y) ∈ θ2, then by (P2), there exists a ∈ R(A) such that (x, y) ∈
Sa/θ1 × Sa/θ1 , consequently, x ∈ Sb1 and y ∈ Sb2 for some b1, b2 ∈ a/θ1.
Thus, 0 ⊕ x = (0 ⊕ b1)θ1(0 ⊕ a) = a and 0 ⊕ y = (0 ⊕ b2)θ1(0 ⊕ a) = a,
consequently, x ⊕ z = 0 ⊕ x ⊕ zθ1a ⊕ z = 0 ⊕ y ⊕ z = y ⊕ z. We have
(x ⊕ z, y ⊕ x) ⊆ θ1 ⊆ θ. In addition, for each (x, y) ∈ θ2, (0 ⊕ x, 0 ⊕ y) ∈ θ1.

(3) Finally, assume that (x, y) ∈ θ3. We use (3.2) again. If x ∈ C(A), then
y/θ1 ∈ X, and f(y/θ1) = x/θ2. Note that by definition of f , x ∈ Sy/θ1\R(A).
There is a ∈ y/θ1 such that x ∈ Sa, so by (Q6), x ⊕ z = (0 ⊕ x) ⊕ z =
a ⊕ zθ1y ⊕ z, that means (x ⊕ z, y ⊕ z) ∈ θ1 ⊆ θ. A similar proof works
for the case y ∈ C(A). Therefore, θ is a congruence relation on the quasi
MV-algebra A.

Theorem 3.8. For each congruence relation θ of A, there exist θ1, θ2 and
a bijection map f : X → C(A)/θ2 satisfying the conditions in Theorem 3.7.

Proof. Let θ ∈ Con(A). Set θ1 := θ ∩ R(A)2, θ2 := θ ∩ C(A)2, X =
{x/θ1 : x ∈ R(A), y ∈ C(A), (x, y) ∈ θ}, and f(x/θ1) := z/θ2, for some
z ∈ (x/θ) \ R(A).

(i) Clearly, θ1 ∈ Con(R(A)).
(ii) If (x, y) ∈ θ2, then (0 ⊕ x, 0 ⊕ y) ∈ θ ∩ R(A)2 = θ1, which means

(0⊕x)/θ1 = (0⊕y)/θ1, so x ∈ S0⊕x ⊆ S(0⊕x)/θ1 and y ∈ S0⊕y ⊆ S(0⊕y)/θ1 =
S(0⊕x)/θ1 , consequently, (x, y) ∈ S(0⊕x)/θ1 × S(0⊕x)/θ1 .

(iii) Clearly, θ2 is an equivalence relation on C(A). By (Q5), R(A)′ =
R(A) and C(A)′ = C(A), so θ2 is compatible with ′.

(iv) Let x/θ1 ∈ X for some x ∈ R(A). Then there exists y ∈ C(A) such
that (x, y) ∈ θ. From (x′, y′) ∈ θ and y′ ∈ C(A) it follows that x′/θ ∈ X.
We claim that f is well-defined. Clearly, y ∈ (x/θ) \ R(A). Assume that
z ∈ (x/θ) \ R(A). Then (x, y), (x, z) ∈ θ implies that (z, y) ∈ θ ∩ R(A)2 =
θ2, which means f(x/θ1) = y/θ2 = z/θ2. Hence, f is well-defined and for
each w ∈ f(x/θ1) we have w/θ2 = f(x/θ1) and vice versa. In addition,
f(x′/θ1) = y′/θ2, since (y′, x′) ∈ θ and y′ ∈ C(A).

(v) First, note that if a ∈ x/θ1 and b ∈ f(x/θ1) for x/θ1 ∈ X, then
(x, a) ∈ θ1 ⊆ θ and (b, z) ∈ θ2 ⊆ θ for some z ∈ (x/θ) \ R(A). Consequently,
from (b, z), (z, x) ∈ θ, it follows that (b, x) ∈ θ, (a, b) ∈ θ and x/θ1 ×
f(x/θ1) ⊆ θ. Similarly, f(x/θ1) × xθ1 ⊆ θ, that is, θ3 ⊆ θ.

According to the statement of Theorem 3.7 and (iv), we have

θ3 =
( ⋃

x/θ1∈X

x/θ1 × f(x/θ1)
)

∪
( ⋃

x/θ1∈X

f(x/θ1) × x/θ1)
)
,
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Figure 1. Decomposition of a congruence relation θ on A

x/θ1 × f(x/θ1) = {(a, b) : a ∈ x/θ1, b ∈ f(x/θ1) , a ∈ R(A), b ∈ C(A)}
= {(a, b) : (a, x) ∈ θ, (x, b) ∈ θ , a ∈ R(A), b ∈ C(A)},

f(x/θ1) × x/θ1 = {(a, b) : (b, x) ∈ θ, (x, a) ∈ θ , b ∈ R(A), a ∈ C(A)}.

We have θ3 = {(a, b) ∈ θ : (a ∈ R(A), b ∈ C(A)) or (b ∈ R(A), a ∈
C(A))} = θ \ (θ1 ∪ θ2). Therefore, θ = θ1 ∪ θ2 ∪ θ3.

(i)–(v) imply that the conditions of Theorem 3.7 hold.

The relations θ1, θ2, and θ3 introduced in Theorem 3.7 are denoted as
the regular part, flat part, and connectivity part of θ, respectively.

The concepts of maximal and prime ideals in quasi MV-algebras have
been explored in previous studies, as detailed in [6,7]. However, a natural
question remains: Can every quasi MV-algebra be associated with maximal
(prime) ideals? In the subsequent discussion, we aim to answer this question.

Theorem 3.9. (i) If A is a flat quasi MV-algebra, then A has neither a
maximal ideal nor a prime ideal. In addition, A \ {x} is a maximal (prime)
weak ideal for each non-zero element x.

(ii) If A is not flat, then A has a maximal (prime) ideal. In addition, an
ideal J of A is a maximal ideal of A if and only if J ∩ R(A) is a maximal
ideal of the MV-algebra R(A). Furthermore, every ideal is included in a
maximal ideal.

(iii) If I is a maximal weak ideal of A, then I =↓ J or I = A \ {x} for
some maximal ideal J of R(A) and some x ∈ A \ R(A).

Proof. (i) Let I be an ideal of a flat quasi MV-algebra A. Then 1 = 0 ∈ I,
so x ≤ 1 ∈ I for all x ∈ A implies that I = A. Hence, Id(A) = {A}, which
means A does not have any maximal (prime) ideal. Let x be a non-zero
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element of A, then 0 ∈ A \ {x}, a ⊕ b = 0, and a � b = 0 for all a, b ∈ A, so
A \ {x} is a weak ideal of A. It is a maximal weak ideal. Furthermore, if I
and J are weak ideals of A such that I ∩ J ⊆ A \ x, then x /∈ I or x /∈ J , so
I ⊆ A \ {x} or J ⊆ A \ {x}. Therefore, A \ {x} is a prime weak ideal of A.
Now, let J be a maximal ideal of A. By Proposition 3.5(i), 0 ⊕ J is an ideal
of R(A) and J =↓ (0 ⊕ J). If H ∈ Id(R(A)) such that 0 ⊕ J � H ⊆ R(A),
then there exists h ∈ H \ 0 ⊕ J and J =↓ (0 ⊕ J) ⊆↓ H ⊆ A, in addition,
J =↓ (0 ⊕ J) �=↓ H (otherwise, h ∈ 0 ⊕ J). Thus, ↓ H = A, consequently,
R(A) ⊆ H. Therefore, 0 ⊕ J is a maximal ideal of R(A).

(ii) By Proposition 3.5(i), we can show that for each maximal ideal I
of R(A), ↓ I is a maximal ideal of A. Indeed, if J ∈ Id(A) such that ↓
I ⊆ J ⊆ A, then due to I = (↓ I) ∩ R(A) ⊆ J ∩ R(A) ⊆ R(A) and
J ∩ R(A) ∈ Id(R(A)), we get that J ∩ R(A) = R(A) or J ∩ R(A) = I.
If J ∩ R(A) = R(A), then J =↓ (J ∩ R(A)) =↓ R(A) = A. Similarly, if
J ∩ R(A) = I, then J =↓(J ∩ R(A)) =↓I. Therefore, ↓I is a maximal ideal
of A. Now, [6, Prop 3.5] implies that A has a prime ideal. Let J be an ideal
of A. By [8, Prop 1.2.13], there exists a maximal ideal L of R(A) such that
J∩R(A) ⊆ L. We have ↓L is a maximal ideal of A and J =↓(J∩R(A)) ⊆↓L.

(iii) Note that if A \ R(A) = ∅, then A is an MV-algebra, so by [18], the
concept of weak ideals coincides with the concept of ideals, so A has at least
one maximal ideal J , therefore, J = J ∪ (A \R(A)) is a maximal weak ideal
of A.

Assume that A is a proper quasi MV-algebra. Take an element x ∈ A \
R(A) and consider the set I = A\{x}. Then R(A) ⊆ I, and x⊕y ∈ R(A) ⊆ I
for all x, y ∈ I. If x ∈ A and y ∈ I, then x � y ∈ R(A) ⊆ I, so I is a weak
ideal of A which is maximal.

Finally, let K be an arbitrary maximal weak ideal of A. There are two
cases:

Case 1. If R(A) ⊆ K, then A must be proper, so there exists x ∈ A \ H
(thus x /∈ R(A)), consequently, K ⊆ A \ {x} ⊆ A implies that K = A \ {x}.

Case 2. If R(A) is not a subset of K, then by Proposition 3.5(ii), 0⊕K is
an ideal of R(A). By [8], there is a maximal ideal J of the MV-algebra R(A)
such that 0⊕K ⊆ J � R(A). Due to Proposition 3.5(i), ↓(0⊕K) ⊆↓J ⊆ A.
Also, K ⊆↓ (0 ⊕ K) (because, by [18, Lem 11], x ≤ 0 ⊕ x ∈ 0 ⊕ K). On the
other hand, for each b ∈ R(A) \ J , b /∈↓J . So, K =↓K =↓J . Note that ↓J
and ↓(0 ⊕ K) are ideals (and weak ideals) of A.
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4. On Perfect Quasi MV-Algebras

In this section, we continue in the study of perfect quasi MV-algebras, build-
ing upon the work initiated in [7]. We examine the relationship between a
perfect quasi MV-algebra A and the corresponding MV-algebra R(A). Our
demonstration establishes that A attains perfection if and only if R(A)
qualifies as a perfect MV-algebra. This observation guides us to derive a
representation of perfect quasi MV-algebras. We recall that the relations τ
and χ in the present section were defined by (2.1).

Proposition 4.1. Let A be a quasi MV-algebra. Then A is perfect if and
only if A/τ is a perfect MV-algebra. In addition, no flat quasi MV-algebra
is perfect.

Proof. First, note that if A is a flat quasi MV-algebra, for each x, y ∈ A
we have 1 = (x ⊕ y) ⊕ 1 = (x ⊕ y) ⊕ 0 = x ⊕ y. Hence, for each x ∈ A we
have x ⊕ x = 1 which implies that ord(x) < ∞. Therefore, A is not perfect.

By [18, Thm 55], the map f : A → A/χ × A/τ , defined by f(a) =
(a/χ, a/τ), is a subdirect embedding. On the other hand, the mapping
ϕ(x) := x ⊕ 0 is an onto homomorphism from A to R(A) and A/χ =
A/ ker(ϕ) ∼= R(A) (see [18, p. 253]). For each x ∈ R(A), ord(x) < ∞ implies
that ord(x′) = ∞, that is R(A) is a perfect MV-algebra. Conversely, assume
that R(A) is a perfect MV-algebra. By Theorem 3.9(ii), A is local. Given
x ∈ A such that ord(x) = n for some n ∈ N, we have two cases: If n = 1, then
x = 1 and so ord(x′) = ord(0) = ∞. If n ≥ 2, by (Q6), 1 = n.x = n.(0 ⊕ x)
which entails ord(0 ⊕ x)′ = ∞. Thus, ord(x′) = ∞, otherwise, m.x′ = 1
implies that x′ = 1 (equivalently x = 0) or 1 = m.x′ = m.(0 ⊕ x′) which is
a contradiction in both cases. Therefore, A is perfect.

Corollary 4.2. Let θ be a congruence relation of a quasi MV-algebra A.
The following statements hold:

(i) If M = (M ; ⊕,′ , 0, 1) is a perfect MV-algebra and A is a flat quasi
MV-algebra, the direct product M × A is a perfect quasi MV-algebra.

(ii) An ideal I of A is perfect if and only if I ∩ R(A) is a perfect ideal of
the MV-algebra R(A).

(iii) A/θ is perfect if and only if I = {x ∈ R(A) : (0, x) ∈ θ} is a perfect
ideal of R(A).

Proof. (i) Since M ∼= M × {0} = R(M × A), the proof is follows from
Proposition 4.1.
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(ii) Trivially, J := I ∩ R(A) is an ideal of R(A). If I is perfect, due to [7,
Prop 5.7], A/I is a perfect quasi MV-algebra. Furthermore, f : R(A/I) →
R(A)/J , defined by f(a/I) = a/J , is an isomorphism.

From a/I ∈ R(A/I), we get that 0/I ⊕ a/I = a/I, which entails that
a/I = (0 ⊕ a)/I. Thus, each element of R(A/I) is of the form (0 ⊕ a)/I
for some a ∈ A. It follows that a/J ∈ R(A)/J . The map f is an onto
homomorphism. In addition, a/I = b/I iff a′ � b, b′ �a ∈ I iff a′ � b, b′ �a ∈
I ∩ R(A) = J (by (Q6)) iff a/J = b/J for all a, b ∈ R(A). Therefore,
R(A/I) ∼= R(A)/J . Since A/I is perfect, by Proposition 4.1, R(A/I) is
perfect and so is R(A)/J . Hence, by [7, Prop 5.7], J is a perfect ideal of
R(A). The proof of the converse follows from R(A/I) ∼= R(A)/J using
similar reasonings.

(iii) Let θ be a congruence relation of the quasi MV-algebra A. By Propo-
sition 4.1, A/θ is perfect iff R(A/θ) is a perfect MV-algebra.

R(A/θ) = {0/θ ⊕ a/θ : a ∈ A} = {(0 ⊕ a)/θ : a ∈ A} = (0 ⊕ A)/θ.

The algebra R(A)/θ is a subalgebra of the quasi MV-algebra A/θ which
is isomorphic to R(A)/(θ ∩ R(A)2) = R(A)/I. The congruence relation
induced by the ideal I in the MV-algebra R(A) is θ ∩ R(A)2. Therefore,
A/θ is perfect iff I is a perfect ideal of R(A).

Since R(A) is isomorphic to A/τ , from Proposition 4.1, it follows that A
is perfect if and only if R(A) is a perfect MV-algebra.

Proposition 4.3. Let A be a quasi MV-algebra. The following statements
hold:

(i) Let Rad(A) be the intersection of all maximal ideals of A. Then

Rad(A) = {x ∈ A : n.x ≤ x′, ∀n ∈ N}.

(ii) B = Rad(A) ∪ Rad(A)′ is a subalgebra of A that is a perfect quasi
MV-algebra.

Proof. (i) If A is flat, then by Theorem 3.9(i), Max(A) = ∅, so Rad(A) =⋂
Max(A) = A. On the other hand, for each x ∈ A and each n ∈ N,

n.x ≤ 0 ≤ x′ (since A is flat, x ≤ y for all x, y ∈ A). Hence Rad(A) = A =
{x ∈ A : n.x ≤ x′, ∀n ∈ N}.

Now, suppose that A is not flat. Due to Theorem 3.9(ii), Max(A) �= ∅.
Choose x ∈ Rad(A). Then x ∈ J for every maximal ideal J of A and
0 ⊕ x ∈ J ∩ R(A). From Theorem 3.9(ii), it follows that 0 ⊕ x belongs to
every maximal ideal of the MV-algebra R(A). [8, Prop 3.6.4] implies that
0 ⊕ x = 0 or n.(0 ⊕ x) ≤ (0 ⊕ x)′ for all n ∈ N. On the other hand,
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by (Q6), n.x = n.(0 ⊕ x) ≤ x′ for all integer n ≥ 2 and by [18, Lem
11(vi)], x ≤ 0 ⊕ x ≤ x′. Also, 0 ⊕ x = 0 implies that x ≤ 0 ≤ x′. Hence
x ∈ {x ∈ A : n.x ≤ x′, ∀n ∈ N}. Conversely, if x ∈ A such that n.x ≤ x′

for all n ∈ N. We claim x ∈ J for every maximal ideal J of A. Choose a
maximal ideal J of A. By [18, Lem 11(ii)], 0 ⊕ n.x ≤ 0 ⊕ x′ = (0 ⊕ x)′.

Case 1. For each n ≥ 2 by (Q6), we have n.(0 ⊕ x) = 0 ⊕ n.x ≤ 0 ⊕ x′ =
(0 ⊕ x)′.

Case 2. For n = 1 by [18, Lem 11(vi)], we have 0⊕x ≤ x ≤ 0⊕x′ = (0⊕x)′.
It follows that 0 ⊕ x belongs to Rad(R(A)). By [8, Prop 3.6.4] and (i),

0⊕x ∈ J ∩R(A) ⊆ J (note that due to Theorem 3.9, J ∩R(A) is a maximal
ideal of R(A)). Therefore, Rad(A) = {x ∈ A : n.x ≤ x′, ∀n ∈ N}.

(ii) First, we show that B is a subalgebra of A. Clearly, 0, 1 ∈ B, and B
is closed under the unary operation ′. Choose x, y ∈ B. If x, y ∈ Rad(A),
then x ⊕ y ∈ Rad(A), since it is an ideal of A. If x, y ∈ Rad(A)′, then by
[18, Lem 37], x′ � y′ ∈ Rad(A), so x ⊕ y = (x′ � y′)′ ∈ Rad(A)′. Now,
assume that x ∈ Rad(A) and y ∈ Rad(A)′. Then (x⊕y)′ ≤ y′ ∈ Rad(A), so
(x⊕y)′ ∈ Rad(A), consequently, x⊕y ∈ Rad(A)′. Hence, B is a subalgebra
of A. In addition, Rad(A) is the only maximal ideal of B.

We claim that (B; ⊕,′ , 0, 1) is a perfect quasi MV-algebra. Let x ∈ B. If
ord(x) < ∞, then n.x = 1 for some n ∈ N which implies that x /∈ Rad(A),
by (i). Hence, x′ ∈ Rad(A), which implies that n.x′ ≤ x for all n ∈ N. If
x′ = 0, then ord(x′) = ∞. Otherwise, n.x′ ≤ x < 0′ = 1, so ord(x′) = ∞.
Therefore, (B; ⊕,′ , 0, 1) is a perfect quasi MV-algebra.

Let D(A) = {x ∈ A : ord(x) = ∞}, D∗(A) = {x ∈ A : ord(x) < ∞}, and
D∗(A) = {x ∈ A : x ≥ y′, ∃y ∈ D(A)}. By [7], A is perfect iff D∗(A) =
D∗(A). In addition, when A is perfect, D(A) is the unique maximal ideal
of A.

Lemma 4.4. Let A be a perfect quasi MV-algebra. Then D(A) � D(A) =
{0}.
Proof. Choose x, y ∈ D(A). Since A is perfect by Proposition 4.1, R(A) ∼=
A/τ is perfect. For each x ∈ D(A) we have ord(0⊕x) = ∞, otherwise, n.(0⊕
x) = 1 and (Q6) imply that n.x = n.(0 ⊕ x) = 1 for n ≥ 2. Furthermore,
if 0 ⊕ x = 1, then x ⊕ x = (0 ⊕ x) ⊕ x = 1. Thus, ord(0 ⊕ x) = ∞, that is
0 ⊕ x ∈ D(A).

Hence 0⊕y, 0⊕x ∈ D(R(A)). By Proposition 4.1, R(A) is a perfect MV-
algebra, and due to [19, Prop 48], we have (0⊕x)�(0⊕x) = 0. On the other
hand, by [18, Lem 11(vi)] and [5, Lem 3.4(3)], x�y ≤ (0⊕x)�(0⊕y) = 0 and
x�y = (0⊕x)�(0⊕y) = 0⊕(x�y) ∈ R(A), by [5, Lem 3.1(4)]. Consequently,
x � y = 0, since R(A) is an MV-algebra. Therefore, D(A) � D(A) = 0.
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Proposition 4.5. The following statements hold on each perfect quasi MV-
algebra A:

(i) D(A) � D∗(A), that is x ≤ y for all x ∈ D(A) and y ∈ D∗(A).

(ii) If x ⊕ a = y ⊕ a for x, y, a ∈ D(A), then 0 ⊕ x = 0 ⊕ y.

(iii) D(A) = D(R(A)) ∪ {x ∈ A : x ∈ a/χ, ∃a ∈ D(R(A))}.
(iv) D(A) is closed under ∨, ∧, ⊕, and 0.

Proof. (i) Choose x ∈ D(A) and y ∈ D∗(A). Since A is perfect and
ord(y) < ∞, so y′ ∈ D(A), due to Lemma 4.4, we get x � y′ = 0, con-
sequently, x ≤ y. Therefore, D(A) � D∗(A).

(ii) (1) Let x⊕a = y ⊕a. Then by (Q6), (0⊕x)⊕ (0⊕ y) = 0⊕ (x⊕a) =
0 ⊕ (y ⊕ a) = (0 ⊕ y) ⊕ (0 ⊕ a).

(2) On the other hand, 0 ⊕ a, 0 ⊕ x, 0 ⊕ y ∈ D(A), since D(A) is an ideal
of A. Lemma 4.4 implies that (0⊕x)� (0⊕a) = 0 and (0⊕y)� (0⊕a) = 0.

We have 0 ⊕ x, 0 ⊕ y, 0 ⊕ a belong to the MV-algebra R(A), so (1), (2)
and [13, Prop 1.28] imply that 0 ⊕ x = 0 ⊕ y.

(iii) The proof is similar to the proof of Proposition 3.5(i).
(iv) Trivially, 0 ∈ D(A). Choose x, y ∈ A. If x ⊕ y /∈ D(A), then ord(x ⊕

y) < ∞, so by [7, Prop 5.1(4)], ord(x) < ∞ or ord(y) < ∞ which are absurd.
Hence, x ⊕ y ∈ D(A).

If ord(x ∨ y) < ∞, then ord(x) = ∞ and [7, Prop 5.1(4)] implies that
ord((x ⊕ y′)′) < ∞, so perfectness of A implies ord(x ⊕ y′) = ∞. On the
other hand, since ord(y) = ∞, by [7, Cor 5.1], ord(y′) = n for some n ∈ N,
consequently, n.(x ⊕ y′) = n.x ⊕ n.y′ = n.x ⊕ 1 = 1, by (Q3), that is
ord(x ⊕ y′) < ∞. Thus, x ∨ y ∈ D(A).

Similarly, we can show x ∧ y ∈ D(A). Therefore, (D(A);∨,∧,⊕, 0) is a
lattice ordered semigroup.

Example 4.6. Let (G; ∨,∧, +,−, 0) be an Abelian �-group. For each g ∈ G
consider a set of symbols Xg satisfying the following two conditions:

(C1) For each g ∈ G, Xg ∩ G = ∅.
(C2) For each x ∈ Xg, there exists a bijection kg : Xg → X−g such that

kg ◦ k−g and k−g ◦ kg are the identity maps.
Note that Xg can be the empty set; in this case, X−g is the empty set,

too. Set X := {Xg : g ∈ G} and GX := {{g, x} : g ∈ G, x ∈ Xg ∪ {g}}.
Define + : GX × GX → GX by {g, x} + {h, y} = {g + h} and − : GX → GX

by −{g, x} = {−g, kg(x)} for all g, h ∈ G, x ∈ Xg, and y ∈ Xh. Trivially, +
and − are well-defined. Given g, h, k ∈ G and x ∈ Xg ∪ {g}, y ∈ Xh ∪ {h}
and z ∈ Xk ∪ {k}, we have:
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(1) {0, t} + {g, x} = {g} for all t ∈ X0 ∪ {0}.
(2) {g, x} + {h, y} = {g, h} = {g} + {h} = {h, y} + {g, x}.
(3) −{g, x} + {g, x} = {0} and −(−{g, x}) = −{−g, kg(x)} = {g, k−g ◦

kg(x)} = {g, x}.
(4) −({g, x} + {0}) = −{g} = {−g,−x} + {0} and {g, x} + {h, y} =

{g + h} = {g} + {h} = ({0} + {g, x}) + ({0} + {h, y}).
From (1)–(4) it follows that (Ql2)–(Ql5) hold. Now, we define binary

operations ∨ and ∧ on GX as follows:

{g, x} ∨ {h, y} = {g ∨ h}, {g, x} ∧ {h, y} = {g ∧ h}. (4.1)

We can easily check that (GX + {0}; ∨,∧, +, {0}) is an �-group which is iso-
morphic to G. In addition, (Ql6) and (Ql7) hold. Therefore, (GX ; ∨,∧, +, {0})
is a quasi �-group.

(5) If in the example, Xg = ∅ for all g ∈ G, then GX is an �-group and it
is isomorphic to G.

Proposition 4.7. Let G and H be isomorphic �-groups, f : G → H be an
�-group isomorphism, and X = {Xg : g ∈ G} satisfy conditions (C1)–(C2)
of the latter example. For each h ∈ H, set X ′

h = Xg if f(g) = h, and let
X ′ =

⋃{X ′
h : h ∈ H}. Then X ′ satisfies conditions (C1)–(C2), and GX and

HX′ constructed in Example 4.6 are isomorphic quasi �-groups.

Proof. We can assume that Xg ∩ H = ∅ for all g ∈ G (otherwise, we can
use the disjoint union of sets).

For each h ∈ H, we define X ′
h := Xg iff f(h) = g. The sets of symbols

X ′
h (h ∈ H) satisfy (C1)–(C2). According to Example 4.6, we have

GX =
{

{g, x} : g ∈ G, x ∈ Xg ∪ {g}
}
,

HX′ =
{

{h, x′} : h ∈ H, x′ ∈ X ′
f−1(h) ∪ {h}

}

=
{

{f(g), x} : g ∈ G, x ∈ Xg ∪ {g}
}
.

Define fX : GX → HX′ by fX({g, x}) = {f(g), x} and fX({g}) = {f(g)},
where g ∈ G and x ∈ Xg. Clearly, fX({0}) = {f(0)} = {0}. Let {g, x},
{h, y} ∈ GX for some g, h ∈ G, x ∈ Xg ∪ {g} and y ∈ Xh ∪ {h}. Then
fX(−{g, x}) = fX({−g, kg(x)}) = {f(−g), kg(x)} = {−f(g), kg(x)} =
−{f(g), x} (note that Xf(g) = Xg and X−f(g) = X−g). Moreover, fX(−{g})
= fX({−g}) = {f(−g)} = {−f(g)} = −fX({g}) and fX({g, x} + {h, y}) =
fX({g + h}) = {f(g + h)} = fX({g, x}) + fX({h, y}). Moreover, according
to (4.1), fX({g, x} ∨ {h, y}) = fX({g ∨ h}) = {f(g ∨ h)} = {f(g) ∨ f(h)} =
fX({g, x}) ∨ fX({h, y}). Similarly, fX preserves ∧ and 1. Therefore, fX is a
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homomorphism. The proof of injectivity and surjectivity of fX is straight-
forward by definition of fX . Whence, GX

∼= HX′ .

Due to the latter result, without loss of generality, we can write HX :=
HX′ , so that GX

∼= HX .

Proposition 4.8. Every quasi �-group is isomorphic to a quasi �-group of
the form GX in Example 4.6.

Proof. Let (G; ∨,∧, +,−, 0) be a quasi �-group. Consider the �-group H :=
G + 0. For each h ∈ H set Xh := {x ∈ G : 0 + x = 0 + h} \ {0 + h}. If
0+x = 0+h, then by (Ql4), 0+−x = −(0+x) = −(0+h) = 0+−h, that is
−x ∈ X−h. Thus, for each x ∈ Xh, there exists a unique element −x ∈ X−h

and vice versa. So, a map kg : Xg → X−g, defined by kg(x) = −x, satisfies
(C2). Let g ∈ G. Then h := 0 + g ∈ H is the only element of H such that
0 + g = 0 + h. Define f(g) = {0 + g, g}. Then f(0) = {0}, f : G → HX is
well-defined, and onto, evidently. If g, h ∈ G such that f(g) = f(h), then
{g, 0 + g} = {h, 0 + h}.

We have two cases: (1) If 0+g = g, then |{g, 0+g}| = 1, so |{h, 0+h}| = 1
and h = g. (2) If 0 + g �= g, then |{g, 0 + g}| = 2, thus h �= 0 + h. We get
0 + g, 0 + h ∈ H and g, h /∈ H, so g = h. That is, f is one-to-one and every
element of HX is uniquely determined by {0 + g, g} for some g ∈ G. By
(4.1), we have

{0 + g, g} ∨ {0 + h, h} = {(0 + g) ∨ (0 + h)} = {g ∨ h}, by [12, Prop 2.7(10)]

(4.2)
{0 + g, g} ∧ {0 + h, h} = {(0 + g) ∧ (0 + h)} = {g ∧ h}, by [12, Prop 2.7(11)].

(4.3)

(i) By (Ql6) and (4.2), HX is a quasi �-group, f(g) ∨ f(h) = {0 + g, g} ∨
{0 + h, h} = {g ∨ h} = {g ∨ h, 0 + (g ∨ h)} = f(g ∨ h). Note that g ∨ h ∈ H,
so 0 + (g ∨ h) = g ∨ h. In a similar way, using [12, Prop 2.7] and (4.3), we
can show that f preserves ∧.

(ii) From (Ql5), it follows that f preserves +.
(iii) f(−g) = {(0 + −g),−g} = {−(0 + g),−g} = −{0 + g, g} = −f(g).
Therefore, f is an isomorphism of quasi �-groups.

Assume that (G; ∨,∧, +,−, 0) is a quasi �-group and (H; ∨,∧, +,−, 0) is
a linear quasi �-group. By (Ql1), 0 + G is an �-group and 0 + H is a linearly
ordered group, so the lexicographic product (0+H) −→× (0+G) is an �-group.

Consider the following operations on H×G for all (h1, g1), (h2, g2), (h3, g3)
∈ H × G:

(h1, g1) + (h2, g2) = (h1 + h2, g1 + g2), (4.4)
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−(h1, g1) = (−h1,−g1), (4.5)

(h1, g1) ∨ (h2, g2) = (0 + h1, 0 + g1) ∨ (0 + h2, 0 + g2), (4.6)

(h1, g1) ∧ (h2, g2) = (0 + h1, 0 + g1) ∧ (0 + h2, 0 + g2). (4.7)

Then (H −→× G; ∨,∧, +,−, (0, 0)) is a quasi �-group. Indeed:
(i) Clearly, (0, 0) + H

−→× G is the �-group (0 + H) −→× (0 + G). So, (Ql1)
holds.

(ii) By definition, (Ql2)–(Ql5) hold, trivially.
(iii) According to the definition of ∧ and ∨ in (4.4), (Ql6) holds.
Therefore, by Lemma 2.3, H

−→× G is a quasi �-group.

(h1, g1) ≤ (h2, g2) ⇔ (h1, g1) ∧ (h2, g2) = (0, 0) + (h1, g1) = (0 + h1, 0 + g1)

(4.8)
⇔ 0 + h1 < 0 + h2 or (0 + h1 = 0 + h2 & 0 + g1 ≤ 0 + g2).

(4.9)

Remark 4.9. Assume that (G; ∨,∧, +,−, 0) and (H; ∨,∧, +,−, 0) are quasi
�-groups such that H

−→× G is a quasi �-group. Then (0, 0) + (H −→× G) is an
�-group, so (0 + H) −→× (0 + G) is an �-group, consequently, by [15, Exm 3],
0 + H is a linearly ordered group. Given x, y ∈ H, we have 0 + x ≤ 0 + y
or 0 + y ≤ 0 + x. Suppose that 0 + x ≤ 0 + y. Then by [12, Prop 2.9(3)],
x ≤ 0 + x ≤ 0 + y ≤ y. Therefore, (H; ∨,∧, +,−, 0) is linear.

Example 4.10. Let (G; ∨,∧, +,−, 0) be a quasi �-group. Consider the quasi
�-group Z

−→× G. Define ulex := ulex(G) : Z
−→× G → Z

−→× G by ulex(x, y) =
(1 − x,−y). We claim that ulex is a strong quasi unit on Z

−→× G. Indeed, we
have:

(i) ulex(0, 0) = (1, 0) ≥ (0, 0) and ulex(ulex(x, y)) = (x, y) for all x, y ∈
Z

−→× G.
(ii) ulex((x, y)+ (0, 0)) = ulex(x, y +0) = (1−x,−(y +0)) = (1−x,−y +

0) = (1, 0) + (−x,−y) = u(0) − (x, y).
(iii) Now, let (0, 0) ≤ (x, y) ≤ ulex(0, 0) = (1, 0). Then by (4.8), (x, y) ∈

{0} × G+ or (x, y) ∈ {1} × −G+. We have ulex(0, 0) − ulex(x, y) = (1, 0) −
(1 − x,−y) = (x, 0 + y) = (0, 0) + (x, y).

(iv) Let (x, y) ∈ Z
−→× G. Then |(x, y)| = |(x, y) + (0, 0)| = |(x, y + 0)| ≤

n(1, 0) = nulex
0 for some integer n ≥ 0 (because ulex

0 = (1, 0) is a strong unit
in the �-group Z

−→× (G + 0)).
(i)–(iv) imply that ulex is a strong quasi unit. Thus, according to [12, Prop

2.13], A = (A; ⊕,′ , 0, 1) := Γq(Z
−→× G, ulex) with the interval [(0, 0), (1, 0)] =

[(0, 1), ulex
0 ] is a quasi MV-algebra, where x ⊕ y = (x + y) ∧ ulex and x′ =
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ulex(x) for all x ∈ Z
−→× G.

(0, g) ⊕ (0, h) = (0, g + h) ∧ (1, 0) = (0, 0 + (g + h)), if g, h ∈ G+

(1, g) ⊕ (1, h) = (2, g + h) ∧ (1, 0) = (1, 0), if g, h ∈ −G+

(0, g) ⊕ (1, h) = (1, g + h) ∧ (1, 0) = (1, 0 ∧ (g + h)), if g,−h ∈ G+.

Given (x, y) ∈ A, (0, 0) ⊕ (x, y) = (x, 0 + y) ∧ (1, 0). If x = 0, then by
(4.4), (x, 0 + y) ∧ (1, 0) = (x, 0 + y). If x = 1, then y ∈ −G+, again by
(4.4), (x, 0 + y) ∧ (1, 0) = (x, 0 + y). Hence (0, 0) ⊕ A = ({0} × (0 + G)+) ∪
({1} × −(0 + G)+) = Γ(Z −→× (0 + G), (1, 0)) (note that 0 + G is an �-group).
It follows from [1, Thm 9] that (0, 0) ⊕ A is a perfect MV-algebra, so by
Proposition 4.1, A is a perfect quasi MV-algebra.

5. Categorical Representation of Perfect Quasi MV-Algebras

In the section, we present a representation of perfect quasi MV-algebras in
the form Γq(Z

−→× G, ulex(G)), where G is a symmetric quasi �-group. More-
over, we show that the category of perfect quasi MV-algebras is categorically
equivalent to the category of symmetric quasi �-groups, which generalizes an
analogous result for perfect MV-algebras, see [10]. Introducing the notion of
a symmetric quasi �-group is essential for this aim.

We will show that each perfect quasi MV-algebra is isomorphic to
Γq(Z

−→× G, ulex), where G is a quasi �-group, ulex is the quasi unit defined
in Example 4.10 by ulex(x, y) = (1 − x,−y), and ulex

0 := uleq(0, 0) = (1, 0).
To prove that, we start with the following two lemmas.

Lemma 5.1. Let (A; ⊕,′ , 0, 1) and (B; ⊕,′ , 0, 1) be quasi MV-algebras and
f : A → B be a map that preserves ′, 0, and 1. Then f is a homomorphism
of quasi MV-algebras if and only if the restriction of f to R(A) maps R(A)
into R(B) and is a homomorphism of MV-algebras such that f(0 ⊕ x) =
f(0) ⊕ f(x) for all x ∈ A.

Proof. If f : A → B is a homomorphism of quasi MV-algebras, for each
x ∈ R(A), we have f(x) = f(0 ⊕ x) = f(0) ⊕ f(x) ∈ R(B). We can easily
verify that f : R(A) → R(B) is a homomorphism of MV-algebras.

Conversely, choose x, y ∈ A. By (Q1), (Q6), and the assumption, we get
f(x⊕y) = f((0⊕x)⊕(0⊕y)) = f(0⊕x)⊕f(0⊕y) = f(0)⊕f(x)⊕f(0)⊕f(y) =
f(x) ⊕ f(y). Therefore, f is a homomorphism of quasi MV-algebras.

Lemma 5.2. Let A be a perfect quasi MV-algebra, B a quasi MV-algebra,
and f : A → B be a homomorphism.
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(i) We have f(D(A)) ⊆ D(B), and a ∈ D(A) if and only if f(a) ∈ D(B).

(ii) If f is surjective, then f(D(A)) = D(B).

Proof. (i) If x ∈ D(A) is such that f(x) /∈ D(B), then ord(f(x)) < ∞,
so that n.f(x) = 1 = f(1), consequently, f((n.x)′) = f(0) and (n.x)′ ∈
f−1({0}) ⊆ D(A) because f−1({0}) is an ideal of A, D(A) is a unique
maximal ideal of A (see the note just before Lemma 4.4) and use Theorem
3.9. It follows that n.x, (n.x)′ ∈ D(A), so 1 ∈ D(A) which is absurd. Hence,
f(D(A)) ⊆ D(B). Since ord(f(a)) ≤ ord(a), we have the end of (i).

(ii) Let f be surjective. Take y ∈ D(B), so that y = f(x) for some x ∈ A.
Then ord(f(x)) = ∞ implies ord(x) = ∞ and x ∈ D(A), which proves the
second part of Lemma.

Theorem 5.3. Let A = (A; ⊕,′ , 0, 1) be a perfect quasi MV-algebra.
(I) There exists a quasi �-group G such that A ∼= Γq(Z

−→× G, ulex(G)).
(II) The quasi �-group G can be chosen such that G = HX for some

�-group H with A ⊕ 0 ∼= Γ(Z −→× H, (1, 0)). In addition, if K is a quasi �-
group such that A ∼= Γq(Z

−→× K,ulex(K)), then G can be embedded in K and
H ∼= K + 0.

Proof. (I) Existence of G. Suppose that A is perfect. By [7, Cor 5.1], we
can easily see that D(A)′ = D∗(A). Due to Proposition 4.1, 0 ⊕ A is a
perfect MV-algebra, so [10] implies that 0 ⊕ A ∼= Γ(Z −→× H, (1, 0)) for some
�-group H. This �-group H is unique up to isomorphism of �-group. Assume
that α : 0 ⊕ A → Γ(Z −→× H, (1, 0)) is an isomorphism of MV-algebras. Since
0 ⊕ A is a perfect MV-algebra, we have

α(0 ⊕ D(A)) = α(D(0 ⊕ A)) = {0} × H+, α(0 ⊕ D(A)′)

= α(D(0 ⊕ A)′) = {1} × −H+.

Assume that π1 : Z×H → Z and π2 : Z×H → H are the natural projection
maps. For each h ∈ H consider the following subsets of C(A) = A \ (0⊕A):

(i) If h ∈ H+, then (0, h) ∈ Γ(Z −→× H, (1, 0)) and α−1(0, h) ∈ 0 ⊕ A ⊆ A.
Set Xh := {a ∈ C(A) : 0 ⊕ a = 0 ⊕ α−1(0, h)} = {a ∈ C(A) : 0 ⊕ a =
α−1(0, h)}, since α−1(0, h) ∈ 0 ⊕ A. In addition, if h ∈ H+, then a ∈ Xh iff
h = π2(α(0 ⊕ a)) and π1(α(0 ⊕ a)) = 0.

(ii) If h ∈ −H+, then (1, h) ∈ Γ(Z −→× H, (1, 0)) and α−1(1, h) ∈ 0⊕A ⊆ A.
Set Xh := {a ∈ C(A) : 0 ⊕ a = 0 ⊕ α−1(1, h)} = {a ∈ C(A) : 0 ⊕ a =
α−1(1, h)}, since α−1(1, h) ∈ 0 ⊕ A. Moreover, if h ∈ −H+, then a ∈ Xh iff
h = π2(α(0 ⊕ a)) and π1(α(0 ⊕ a)) = 1.

(iii) If h ∈ H \ (H+ ∪ −H+), then set Xh := ∅.
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Given h ∈ H+ and a ∈ Xh, we have 0⊕a = α−1(0, h). We claim that a′ ∈
X−h. Indeed, (1,−h) ∈ Γ(Z −→× H, (1, 0)) and α−1(1,−h) = α−1((0, h)′) =
(α−1(0, h))′ = (0 ⊕ a)′ = 0 ⊕ a′, by (Q5). In a similar way, if h ∈ −H+, and
a ∈ Xh, then a′ ∈ H−h. So, the claim holds. Furthermore, when Xh �= ∅,
′ : Xh → X−h is a bijection. In addition, for h ∈ H \ (H+ ∪ −H+), Xh = ∅,
thus, conditions (C1) and (C2) in Example 4.6 are satisfied on the set X =
{Xh : h ∈ H}.

Due to Example 4.6, HX = {{h, x} : h ∈ H, x ∈ Xh ∪ {h}} is a
quasi �-group with {0} as the neutral element, consequently, by Example
4.10, Γq(Z

−→× HX , ulex) is a quasi MV-algebra. Note that the quasi unit
ulex : Z

−→× HX → Z
−→× HX is defined by ulex(a, y) = (1 − a,−y) for all

(a, y) ∈ Z
−→× HX . We prove that A ∼= Γq(Z

−→× HX , ulex). Define β : A →
Γq(Z

−→× HX , ulex) by

β(a) =

⎧
⎪⎨

⎪⎩

(
π1(α(0 ⊕ a)), {π2(α(0 ⊕ a)), a}

)
, if a ∈ C(A)

(
π1(α(0 ⊕ a)), {π2(α(0 ⊕ a))}

)
, if a ∈ 0 ⊕ A.

(5.1)

Due to (i) and (ii), β is well-defined.
(iv) Let β(a) = β(b). If a ∈ C(A), then b ∈ C(A) and π1(α(0 ⊕ a)) =

π1(α(0 ⊕ b)) and {π2(α(0 ⊕ a)), a} = {π2(α(0 ⊕ b)), b}. Evidently, a = b. If
a ∈ 0 ⊕ A, then b ∈ 0 ⊕ A, which entails that πi(α(a)) = πi(α(0 ⊕ a)) =
πi(α(0 ⊕ b)) = πi(α(b)) for i = 1, 2, so a = b (since α is one-to-one).

This gives β(0) = (0, {0}) and β(1) = (1, {0}) which is the top element
in the quasi MV-algebra Γq(Z

−→× HX , ulex).
(v) Choose an arbitrary element (x, y) ∈ Γq(Z

−→× HX , ulex) = ({0} ×
H+

X) ∪ ({1} × −H+
X) (see Example 4.10 part (iii)). If x = 0 and |y| = 2,

then y = {h, a} for some h ∈ H and a ∈ Xh. By (i), π2(α(0 ⊕ a)) = h,
π1(α(0 ⊕ a)) = 0 and h ∈ H+. We have β(a) =

(
π1(α(0 ⊕ a)), {π2(α(0 ⊕

a)), a}
)

= (0, {h, a}). If |y| = 1, then (x, y) = (0, {h}) for h ∈ H+. By

definition, β(α−1(0, h)) = (0, h). A similar proof works for x = 1. Whence,
β is onto.

(vi) If a ∈ 0 ⊕ A, then by (Q5), a′ ∈ 0 ⊕ A and vice versa, entails that
a ∈ C(A) iff a′ ∈ C(A). For the first case, β(a)′ = (π1(α(0 ⊕ a)), {π2(α(0 ⊕
a))}) = (1 − π1(α(0 ⊕ a)), {−π2(α(0 ⊕ a))}) = β(a′). Similarly, if a ∈ C(A),
then β(a)′ = (π1(α(0⊕a)), {π2(α(0⊕a)), a}) = (1−π1(α(0⊕a)), {−π2(α(0⊕
a)),−a}) = β(a′).

(vii) By (4.4) and (4.2), for each a, b ∈ A, we have a⊕ b belongs to 0⊕A,
see (Q6). It follows that α(a ⊕ b) = α(0 ⊕ (a ⊕ b)) = α((0 ⊕ a) ⊕ (0 ⊕ b)) =
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α(0 ⊕ a) ⊕ α(0 ⊕ b), and so

β(a ⊕ b) =
(
π1(α(a ⊕ b)), {π2(α(a ⊕ b))}

)
, since a ⊕ b ∈ 0 ⊕ A

=
(
π1(α((0 ⊕ a) ⊕ (0 ⊕ b))), {π2(α((0 ⊕ a) ⊕ (0 ⊕ b)))}

)
.

Since α : 0 ⊕ A → Γ(Z −→× H, (1, 0)) is an isomorphism, we have
(
π1(α(0 ⊕

a)), π2(α(0 ⊕ a))
)

⊕
(
π1(α(0 ⊕ b)), π2(α(0 ⊕ b))

)
= α(0 ⊕ a) ⊕ α(0 ⊕ b) =

α(a ⊕ b) =
(
π1(α(a ⊕ b)), π2(α(a ⊕ b))

)
. Thus, β(0 ⊕ a) ⊕ β(0 ⊕ b) =

(
π1(α(0⊕a)), {π2(α(0⊕a))}

)
⊕

(
π1(α(0⊕b)), {π2(α(0⊕b))}

)
=

(
π1(α(a⊕

b)), {π2(α(a ⊕ b))}
)

= β(a ⊕ b).

If a ∈ 0 ⊕ A, then β(a) =
(
π1(α(0 ⊕ a)), {π2(α(0 ⊕ a))}

)
∈ R

(Γq(Z
−→× HX , ulex)) = {(0, {h}) : h ∈ H+} ∪ {(1, {−h}) : h ∈ H+}. In ad-

dition, (0, {0}) ⊕ β(a) =
(
π1(α(0 ⊕ a)), {π2(α(0 ⊕ a))}

)
= β(0 ⊕ a).

Hence, by Lemma 5.1, β is a homomorphism of quasi MV-algebras.

From (iv)–(vii), we conclude that β is an isomorphism and A ∼= Γq

(Z −→× HX , ulex). Consequently, if we set G := HX , we get the first asser-
tion in question.

(II) We prove the second part of the statement. Assume that (K; +,∨,

∧,−, 0) is a quasi �-group and f : A → Γq(Z
−→× K, vlex), where vlex :=

ulex(K), is an isomorphism. The restriction f |0⊕A : 0 ⊕ A → (0, 0) ⊕
Γq(Z

−→× K, vlex) = Γ(Z −→× (0+K), (1, 0)) is an isomorphism of MV-algebras.
On the other hand, 0 ⊕ A ∼= Γ(Z −→× ({0} + HX), (1, {0})). It follows that
{0} + HX

∼= 0 + K. Therefore, H ∼= {0} + HX = {{h} : h ∈ H} and
H ∼= 0+K. Assume that μ : {0}+HX → 0+K is the �-group isomorphism
which is induced from the MV-isomorphism

f ◦ β−1 : Γ
(
Z

−→× ({0} + HX), (1, {0})
)

→ Γ
(
Z

−→× (0 + K), (1, 0)
)
.

That is, μ(x) = π2◦f ◦β−1(0, x) for all x ∈ (HX)+. Now, define μ : HX → K
as follows:

μ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

π2(f(β−1(0, x))), if x ∈ (HX)+

−π2(f(β−1(0,−x))), if − x ∈ (HX)+

μ(x), otherwise.
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(viii) Clearly, μ is well-defined and μ(x) = μ(x) for all x ∈ {0} + HX .
That is, μ : {0} + H → 0 + K is an �-group isomorphism.

(ix) If x ∈ HX \((HX)+∪−(HX)+), then −x ∈ HX \((HX)+∪−(HX)+).
Thus μ(−x) = μ(−x) = −μ(x) = −μ(x). By definition, for x ∈ (HX)+ ∪
−(HX)+, we have μ(−x) = −μ(x), so μ preserves the unary operation −.

(x) We claim that μ({0}) + μ(x) = μ({0} + x) for all x ∈ HX . Clearly,
μ({0}) + μ(x) = 0 + μ(x) = μ(x) = μ({0} + x) = μ({0} + x) for all x ∈
HX\((HX)+∪−(HX)+). If x ∈ (HX)+, there exists a ∈ A such that π1(α(0⊕
a)) = 0, π2(α(0⊕a)) = h and x = {h, a}. Hence μ({0}+x) = μ({h}). On the
other hand, μ({0}) + μ(x) = 0 + π2(f(β−1(0, x))) = π2(f(0)) + π2(f(a)) =
π2(f(0)) ⊕ π2(f(a)) = π2(f(0 ⊕ a)) = π2(f(β−1(0, {h}))) = μ({h}). So,
μ(0) + μ(x) = μ(0 + x) for all x ∈ HX .

(xi) By (x) and (Ql5), we get that μ(x + y) = μ({0} + x + {0} + y) =
μ({0}+x)+μ({0}+ y) = μ({0}+x)+μ({0}+ y) = μ(0)+μ(x)+μ({0})+
μ(y) = μ(x) + μ(y).

In a similar way, by (xi) and (Ql6), we get that μ(x∨y) = μ(x)∨μ(y). In
addition, μ(x∧y) = μ(x)∧μ(y), since x∧y = −(−x∨−y) for all x, y ∈ HX .
From (viii)–(xi), it follows that μ is a quasi �-group homomorphism.

(xii) Let x, y ∈ HX such that μ(x) = μ(y). If x ∈ (HX)+, by definition of
μ and Lemma 5.2, μ(x) ∈ K+. If x ∈ −(HX)+, then similarly μ(x) ∈ −K+.
Moreover, if x /∈ (HX)+ ∪ −(HX)+, then μ(x) = μ(x) /∈ K+ ∪ −K+, since
μ is an isomorphism. So, μ(x) = μ(y) implies three cases: (1) x, y ∈ (HX)+.
(2) x, y ∈ −(HX)+. (3) x, y /∈ (HX)+ ∪ −(HX)+.

(1) In this case, by Lemma 5.2, we have β−1(0, y), β−1(0, x) ∈ D(A),
so f(β−1(0, y)), f(β−1(0, x)) ∈ D(Γq(Z

−→× K, vlex)) = {0} × K+, that is
π1(f(β−1(0, y))) = π1(f(β−1(0, x))). On the other hand, by the assumption,
π2(f(β−1(0, y))) = μ(y) = μ(x) = π2(f(β−1(0, x))). Thus,

f(β−1(0, y)) = (π1(f(β−1(0, y))), π2(f(β−1(0, y))))

= (π1(f(β−1(0, x))), π2(f(β−1(0, x)))) = f(β−1(0, x)),

which entails x = y, since f ◦ β−1 is one-to-one.
(2) The proof of case (2) is similar to (1).
(3) If x, y /∈ (HX)+ ∪ −(HX)+, then 0 + x = 0 + y. If 0 + x = 0 + y, due

to the definition of μ, we have μ(x) = μ(x) = μ(y) = μ(y), consequently
x = y, since μ is injective. Hence μ is one-to-one.

Furthermore, for each k ∈ K+ there exists x ∈ (HX)+ such that μ(x) = k.
In fact, given k ∈ K+, there exists a ∈ A such that f(a) = (0, k). Since
D(Γq(Z

−→× K, vlex)) = {0}×K+, by Lemma 5.2, a ∈ D(A) and β(a) ∈ {0}×
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(HA)+. Trivially, for x := π2(β(a)), we have μ(x) = π2(f(β−1(β(a)))) =
π2(f(a)) = k.

As a conclusion of the proof, it is worth noting that if the quasi �-group
K satisfies the condition 0+k = k for all k ∈ K \(K+∪−K+), then trivially
the map μ becomes onto and so it is an isomorphism. It means that up to
isomorphism, there exists a unique quasi �-group K such that 0 + k = k for
all k ∈ K \ (K+ ∪ −K+) and A ∼= Γq(Z

−→× K,ulex(K)).

The following notion will play a central role in the categorical equivalence
of perfect quasi MV-algebras.

Definition 5.4. A quasi �-group (G; +,∨,∧, +,−, 0) is symmetric if g =
0 + g for each g ∈ G \ G+ ∪ −G+.

For example, every �-group is symmetric. Moreover, if G is an �-group,
then the quasi �-group GX from Example 4.6 is symmetric whenever Xg = ∅
for all g ∈ G\(G+∪−G+). The quasi �-group HX from the proof of Theorem
5.3 has the just mentioned property, and it is symmetric.

In the next lemma, we show that [9, Prop 5.6] holds for symmetric quasi
�-groups instead of �-groups.

Lemma 5.5. Let (Gi; +,∨,∧,−, 0) be a symmetric quasi �-group for i = 1, 2
and f : G+

1 → G+
2 be a monoid homomorphism that preserves +, ∨, ∧, and

0. There exists a unique extension of f to a quasi �-group homomorphism
F : G1 → G2. In addition, we have F (x) = f(x) and F (−x) = −f(x) for
all x ∈ G+

1 and F (x) = f(x+) − f(x−), otherwise.

Proof. Clearly, f(0 + G+
1 ) ⊆ 0 + G+

2 so f1 := f |0+G+
1

: 0 + G+
1 → 0 + G+

2

is a monoid homomorphism preserving ∨ and ∧. By [9, Prop 5.6], f1 can be
uniquely extended to an �-group homomorphism F1 : 0 + G1 → 0 + G2 by
F1(x) = f1(x+) − f1(x−) = f(x+) − f(x−) for all x ∈ 0 + G1. Now, choose
g ∈ G1. Define F : G1 → G2 as follows:

F (g) =

⎧
⎪⎪⎨

⎪⎪⎩

f(g), if g ∈ G+
1

−f(−g), if g ∈ −G+
1

F1(g), otherwise.

Since G1 and G2 are symmetric, F is well-defined and F |G+
1

= f . In addition,
F preserves − and

F (x) + F (0) = f(x) + f(0) = f(x + 0) = F (x + 0), ∀x ∈ G+
1 ,

F (x) + F (0) = −f(−x) + f(0) = −f(−x + 0) = −F1(−x + 0) = F1(x + 0)

= F (x + 0), ∀x ∈ −G+
1 ,
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F (x) + F (0) = F1(x) + f(0) = F1(x) + F1(0) = F1(x + 0) = F (x + 0),

∀x ∈ G1 \ (G+
1 ∪ −G+

1 ).

Hence, F (x) + 0 = F (x) + F (0) = F (x + 0) for all x ∈ X. Using (QL5) and
(QL6) for all x, y ∈ G1, we get

F (x + y) = F (x + 0 + y + 0) = F1(x + 0 + y + 0) = F1(x + 0) + F1(y + 0)

= F (x + 0) + F (y + 0) = F (x) + F (0) + F (y) + F (0) = F (x) + F (y).

In a similar way, we can show that F preserves ∨ and ∧. Therefore, F is a
quasi �-group homomorphism. Now, let F ′ : G1 → G2 be a quasi �-group
homomorphism such that F ′(x) = f(x) for all x ∈ G+

1 . Then F ′|0+G1 :
0 + G1 → 0 + G2 is an �-group homomorphism and F ′(x) = f(x) for all
x ∈ (0 + G+

1 ), so by [9, Prop 5.6], F ′|0+G1 = F |0+G1 . Now, choose x ∈ G1.
Since G1 is symmetric, x ∈ 0+G1, or x ∈ G+

1 ∪−G+
1 . If x ∈ G+

1 , then by the
assumption, F ′(x) = f(x) = F (x). If x ∈ −G+

1 , then F ′(x) = −F ′(−x) =
−f(−x) = −F (−x) = F (x). If x ∈ 0 + G1, then F ′(x) = F (x), since
F ′|0+G1 = F |0+G1 .

Note that the proof of Lemma 5.5 does not work when G1 is not sym-
metric. The following corollary is a straight consequence of Lemma 5.5.

Corollary 5.6. If G1 and G2 are symmetric quasi �-groups and f, h :
G1 → G2 are homomorphisms of quasi �-groups such that f |G+

1
= h|G+

1
,

then f = h.

Let QMV be the category of quasi MV-algebras, whose objects are quasi
MV-algebras and morphisms are homomorphisms of quasi MV-algebras. The
category PQMV of perfect quasi MV-algebras has objects perfect quasi MV-
algebras and morphisms are homomorphisms of perfect quasi MV-algebras.
The category QLG of quasi �-groups has objects quasi �-groups and mor-
phisms are homomorphisms of quasi �-groups. Finally, let SQLG be the
category of symmetric quasi �-groups whose objects are symmetric quasi
�-groups and morphisms are homomorphisms of quasi �-groups. Define a
mapping P : SQLG → PQMV by

P(G) = Γq(Z
−→× G, ulex(G))

if G is an object in SQLG and if h : G1 → G2 is a morphism of symmetric
quasi �-groups, then we define

P(h)(x) =

{
(0, h(g)), if x = (0, g),
(1,−h(g)), if x = (1,−g), g ∈ G+

1 .
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Lemma 5.7. The mapping P is a full and faithful functor from the category
SQLG of symmetric quasi �-groups into the category PQMV of perfect quasi
MV-algebras.

Proof. If G1 and G2 are symmetric quasi �-groups and h : G1 → G2 is a
morphism of quasi �-groups, then P(h) : Γq(Z

−→× G1, u
lex(G1)) → Γq(Z

−→× G2,

ulex(G2)) is a quasi MV-morphism: Let x = (x1, x2) ∈ Γq(Z
−→× G1, u

lex(G1)).
If x = (0, g1) for some g1 ∈ G+

1 , then P(h)(x′) = P(h)(ulex(G1)(x)) =
P(h)(1,−g1) = (1,−h(g1)) = ulex(G2)(0, h(g1)) = (0, h(g1))′ = (P(h)(x))′.
Similarly, we can show that P(h)((1,−g1)′) = (P(h)(1,−g1))′.

Recall that P(h|0+G1) : Γ(Z −→× (0 + G1), (1, 0)) → Γ(Z −→× (0 + G2), (1, 0))
is a homomorphism of MV-algebras, by [8, Lem 7.4.2]. We have P(h)((0, 0)⊕
x) = P(h)((0, 0) + x) = P(h)(x1, 0 + x2).

If x1 = 0, then by (Ql4), P(h)(x1, 0 + x2) = (0, h(0 + x2)) = (0, 0 +
h(x2)) = (0, 0) + (x1, h(x2)) = P(h)(0, 0) + P(h)(x1, 0 + x2) = P(h)(0, 0) ⊕
P(h)(x1, 0 + x2). If x1 = 1, then P(h)(x1, 0 + x2) = P(h)(x1,−(0 − x2)) =
(x1,−h(0 − x2)) = (0, 0 + h(x2)) = P(h)(0, 0) ⊕ P(h)(x1, x2). Hence

P(h)((0, 0) ⊕ x) = P(h)((0, 0)) ⊕ P(h)(x). (5.2)

Since P(h|0+G1) preserves ⊕, using (Ql5) and (5.2), we get P(h) does pre-
serve ⊕. Therefore, it is a quasi MV-homomorphism, and consequently, P
is a functor.

To prove that P is full, assume that f : P(G1) → P(G2) is a morphism of
quasi MV-algebras and let g ∈ G+

1 . Then f(0, g) = (0, g′) and f(1,−g)) =
(1,−g′) for a unique g′ ∈ G+

2 . Define a mapping h : G+
1 → G+

2 by h(g) =
g′ if and only if f(0, g) = (0, g′) and f(1,−g) = (1,−g′). Then h(g1 +
g2) = h(g1) + h(g2), h(g1 ∨ g2) = h(g1) ∨ h(g2) and h(g1 ∧ g2) = h(g1) ∧
h(g2) if g1, g2 ∈ G+

1 . Due to Lemma 5.5, h can be extended to unique a
homomorphism ĥ : G1 → G2. Moreover, P(ĥ) = f .

Now, let h1 and h2 be two morphisms from a symmetric quasi �-group
G1 into a symmetric quasi �-group G2 such that P(h1) = P(h2). Then
(0, h1(g)) = (0, h2(g)) for any g ∈ G+

1 , consequently h1 = h2 implying P is
faithful.

The following theorem shows that the categories PQMV and SQLG are
categorically equivalent. It generalizes the analogous result from [10] on the
categorical equivalence of perfect MV-algebras and the category of �-groups.

Theorem 5.8. The category of symmetric quasi �-groups and the category
PQMV of perfect MV-algebras and the category SQLG of symmetric quasi
�-groups are categorically equivalent.
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Proof. Due to Lemma 5.7, the functor P : SQLG → PQMV is faithful
and full. Let A be a perfect quasi MV-algebra. If we take the quasi �-group
G = HX from the proof of Theorem 5.3, according to the note just after
Definition 5.4, then G is symmetric and P(G) = Γq(Z

−→× G, ulex(G)) ∼= A.
Applying [20, Thm IV.1], P defines a categorical equivalence in question.

Due to Theorem 5.3 and its proof, for each perfect pseudo MV-algebra
A, there is a symmetric quasi �-group GA := HX such that A ∼= Γ(Z −→× GA,
ulex(GA)) = P(GA). The mapping βA := β : A → P(GA) defined by (5.1)
is an isomorphism of quasi MV-algebras. In what follows, we show that
the couple (GA, βA) is a universal arrow from A to P. Thus, let K be a
symmetric quasi �-group and f : P(K) → P(GA) be a homomorphism of
quasi MV-algebras. Due to Lemma 5.2, we have β(D(A)) = D(P(GA)) =
{(0, g) : g ∈ G+

A} and f(D(A)) ⊆ D(P(G)) = {(0, k) : k ∈ K+}. For each
g ∈ G+

A, there are a unique a ∈ D(A) and a unique k ∈ K+ such that
βA(a) = (0, g) and f(a) = (0, k). Then the mapping φ0 : G+

A → K+ given
by φ0(g) = k is correctly defined, and φ0 preserves +, ∨, and ∧. Due to
Lemma 5.5, φ0 can be uniquely extended to a homomorphism φ : GA → K.
Define a mapping h : P(G) → P(K) by h(0, g) = (0, φ0(g)) and h(1,−g) =
(1,−φ0(g)) for each g ∈ G+

A. Then h is a homomorphism of quasi �-groups
such that h ◦ βA = f . Moreover, if h′ : P(GA) → P(K) be such that
h′ ◦ βA = f , then h′ = h proving (GA, βA) is a universal arrow from A to
P. Moreover, this arrow generalizes note (II) in Theorem 5.3.

6. n-Perfect Quasi MV-Algebras

In the section, we generalize the notion of perfect quasi MV-algebras to n-
perfect quasi MV-algebras, n ≥ 1, that is to quasi MV-algebras that are
roughly speaking isomorphic to quasi MV-algebras of the form Γq( 1

nZ
−→× G,

ulex(G)), where G is a quasi �-group. In addition, we present that the cat-
egory of n-perfect quasi MV-algebras is also categorically equivalent to the
category of symmetric quasi �-groups. To prove it, we use ideas from the
previous section.

Let x, y ∈ A. Since x⊕y = (x⊕0)⊕(y⊕0), see (Q6), the regular elements
x⊕0, y⊕0 belong to the MV-algebra R(A). We can define a partial addition
+ on A by x+y := x⊕y iff (x⊕0)�(y⊕0) = 0 or equivalently, x⊕0 ≤ y′⊕0.
Given an element x of a quasi MV-algebra A, we set 0x := 0, 1x := x. If
n ≥ 2, we define nx = (n − 1)x + x whenever (n − 1)x ⊕ 0 ≤ x′ ⊕ 0.
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Definition 6.1. Let n ≥ 1 be an integer. We say that a quasi MV-algebra
A = (A; ⊕,′ , 0, 1) is n-perfect if there are non-empty and mutually disjoint
subsets A0, A1, . . . , An of A such that (i) A0 ∪ · · · ∪ An = A, (ii) Ai ≤ Aj

whenever 0 ≤ i < j ≤ n, that is x ≤ y for all x ∈ Ai and y ≤ Aj ,
(iii) A′

i := {x′ : x ∈ Ai} = An−i, i = 0, 1, . . . , n, and (iv) if Ai ⊕ Aj :=
{x ⊕ y : x ∈ Ai, y ∈ Aj}, then Ai ⊕ Aj ⊆ Amin{n,i+j} for i, j = 0, 1, . . . , n.
Clearly, in (ii), we have x < y for x ∈ Ai and y ∈ Aj with i < j.

We note that if n = 1, a 1-perfect quasi MV-algebra is exactly a perfect
quasi MV-algebra.

Proposition 6.2. Let A be a quasi MV-algebra. We have:

(1) If A is an n-perfect quasi MV-algebra, then R(A) is an n-perfect MV-
algebra.

(2) If A0, . . . , An are subsets of A satisfying Definition 6.1, then A0 is a
maximal ideal of A.

(3) If A0, . . . , An and B0, . . . , Bn are subsets of A satisfying Definition 6.1,
then Ai = Bi for each i = 0, 1, . . . , n.

Proof. (1)–(2) The sets Ai ∩ R(A), i = 0, 1, . . . , n, form a decomposition
of the MV-algebra R(A) in the sense of Definition 6.1, so then R(A) is an
n-perfect MV-algebra in the sense of [11]. Whence, A0 ∩ R(A) is a maximal
ideal of R(A), see [11, Thm 4.1(v)], and by Theorem 3.9(iii), A0 is a maximal
ideal of A.

(3) If subsets B0, . . . , Bn of A satisfy the conditions of the definition,
then Ai ∩ R(A) = Bi ∩ R(A) (i = 0, 1, . . . , n) due to the uniqueness in n-
perfect MV-algebras. In addition, we have Ai = Bi for each i = 0, 1, . . . , n:
Choose an arbitrary x ∈ Ai. There exists Bj such that x ∈ Bj . Since x ⊕
0 ∈ Ai ⊕ A0 = Ai, x ⊕ 0 ∈ Bj , and x ⊕ 0 is regular, we have x ⊕ 0 ∈
Ai ∩ R(A) = Bi ∩ R(A). On the other hand, x ∈ Bj ∩ R(A), which yields
i = j and Ai ⊆ Bi. In an analogous way, we can show Bi ⊆ Ai. Or we can
use that B0, . . . , Bn form a disjoint decomposition of A, so in both ways,
Ai = Bi.

Therefore, by (3) of the latter proposition, we can write unambiguously
A = (A0, . . . , An) for an n-perfect quasi MV-algebra A.

There is a narrow connection between n-perfect quasi MV-algebra A and
the n-perfect MV-algebra R(A):

Proposition 6.3. A quasi MV-algebra A is n-perfect if and only if R(A)
is an n-perfect MV-algebra.
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Proof. One direction was proved in Proposition 6.2(1).
Now, assume that R(A) is an n-perfect MV-algebra. Consider subsets

A0, A1, . . . , An of R(A) such that R(A) = (A0, . . . , An). For each
i ∈ {0, 1, . . . , n}, we set Bi := SAi

by (3.1).
(i) For each x ∈ A there exists a unique i ∈ {0, 1, . . . , n} such that

0 ⊕ x ∈ Ai. It entails that x ∈ Bi ⊆ ⋃n
j=0 Bj . In addition, y ∈ Bi ∩ Bj

implies that 0 ⊕ y ∈ Ai ∩ Aj , which implies i = j. Hence B0, B1, . . . , Bn are
mutually disjoint.

(ii) Given 0 ≤ i < j ≤ n, x ∈ Bi, and y ∈ Bj , we have x ≤ 0 ⊕ x ≤
0 ⊕ y ≤ y (use [18, Lem 11(vi)]). Therefore, Bi ≤ Bj .

(iii) Choose y ∈ B′
i. Then y′ ∈ Bi and by (Q5), we have

y′ ∈ Bi ⇔ 0 ⊕ y′ ∈ Ai ⇔ (0 ⊕ y)′ ∈ Ai ⇔ 0 ⊕ y ∈ An−i ⇔ y ∈ Bn−i.

(iv) Applying (Q6) for each x ∈ Bi and y ∈ Bj , we get

x ⊕ y = (0 ⊕ x) ⊕ (0 ⊕ y) ∈ Ai ⊕ Aj = Amin{n,i+j} ⊆ Bmin{n,i+j},

yielding Bi ⊕ Bj ⊆ Bmin{n,i+j}. Therefore, A is an n-perfect quasi MV-
algebra.

Theorem 6.4. An n-perfect quasi MV-algebra A = (A0, . . . , An) is isomor-
phic to an n-perfect quasi MV-algebra of the form Γq( 1

nZ
−→× G, ulex(G)) for

some symmetric quasi �-group G if and only if, there is an element a ∈ A1

such that na exists in A and na = 1. In such a case, G can be symmetric.

Proof. For one direction, it is enough to take a quasi MV-algebra Γq

( 1
nZ

−→× G, ulex(G)), where G is a symmetric quasi �-group. If we set A0 =
{(0, g) : g ∈ G+}, An = {(1, g) : g ∈ −G+}, and for 0 < i < n we define
Ai = {(i/n, g) : g ∈ G}, then Γq( 1

nZ
−→× G, ulex(G)) is n-perfect with a fixed

element a = (1/n, 0) ∈ A1 satisfying na = (1, 0).
Conversely, let A = (A0, . . . , An) be an n-perfect quasi MV-algebra with

a fixed element a ∈ A1 such that na exists in A and na = 1. Without loss
of generality, we can assume that the fixed element a is regular. Due to
Proposition 6.3, R(A) is an n-perfect MV-algebra, and the element a ⊕ 0
satisfies na = n(a ⊕ 0) = 1. By [11], there is an Abelian �-group H such
that R(A) ∼= Γ( 1

nZ
−→× H, (1, 0)); let α : R(A) → Γ( 1

nZ
−→× H, (1, 0)) be the

isomorphism. As in the proof of Theorem 5.3, construct the symmetric quasi
�-group HX . The mapping β : A → Γq( 1

nZ
−→× HX , ulex(HX)), defined by

(5.1), is an isomorphism also in this case (we use the same ideas as in
Theorem 5.3). If we put G = HX , we get the assertion in question.

Given an integer n ≥ 1, the category PQMVn of n-perfect quasi MV-
algebras has objects couples (A, a), where A is an n-perfect MV-algebra with
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a fixed element a ∈ A such that na exists in A and na = 1. Morphisms are
homomorphisms of perfect quasi MV-algebras preserving the fixed elements
a’s. Moreover, PQMVn is a category. If n = 1 and (A, a) ∈ PQMV1 is an
object, for the fixed element a ∈ A1, we have a = 1. Therefore, PQMV1 is
practically PQMV.

Theorem 6.5. The category PQMVn is categorically equivalent to the cat-
egory SQLG.

Proof. Define a mapping Pn from the category SQLG into PQMVn as
follows: Let G be a symmetric quasi �-group, then

Pn(G) =
(
Γq(

1
n

Z
−→× G, ulex(G)), (1/n, 0)

)
,

and if h : G1 → G2 is a morphism, then

Pn(h)(x) =

⎧
⎪⎨

⎪⎩

(0, h(g)), if x = (0, g), g ∈ G+
1

(i/n, h(g+) − h(g−)), if x = (i/n, g), g ∈ G1, i = 1, . . . , n − 1,
(1, −h(g)), if x = (1, −g), g ∈ G+

1 .

Then Pn is a functor. As in Lemma 5.7, Pn is full and faithful, and by
Theorem 6.4, given an object (A, a), where A is an n-perfect quasi MV-
algebra and na = 1, there is a symmetric quasi �-group G such that (A, a) ∼=
Pn((Γq( 1

nZ
−→× G, ulex(G)), (1/n, 0))). Due to [20, Thm IV.1], Pn defines a

categorical equivalence in question.

We have a straightforward consequence of the latter theorem and Theo-
rem 5.8:

Corollary 6.6. The categories PQMVn (n ≥ 1), PQMV, and SQLG are
categorically equivalent.

We note that it is possible to show that if βA := β and GA := HX , then
(GA, βA) is a universal arrow from (A, a) to Pn.

In the rest of the paper, we show that the category of perfect (n-perfect)
quasi MV-algebras is categorically equivalent to the category of Abelian
�-groups or to the category of perfect MV-algebras, compare [10].

Let LG be the category of �-groups whose objects are Abelian �-groups
and morphisms are homomorphisms of �-groups. Define a mapping R :
SQLG → LG by

R(G) := G + 0, G ∈ SQLG,

and if h : G1 → G2 is a morphism of symmetric quasi �-groups G1, G2, then
R(h) is the restriction of h onto G1+0. Clearly, R is a functor. Analogously
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we define the category PMV of perfect MV-algebras and the category of
n-perfect MV-algebras PMVn.

Theorem 6.7. The category of symmetric quasi �-groups SQLG is categor-
ically equivalent to the category of LG of Abelian �-groups.

Proof. Fullness. Assume that h : R(G1) = (G1 + 0) → R(G2) = G2 + 0,
is a morphism of �-groups. For each i = 1, 2, construct the symmetric quasi
�-group Hi

X corresponding to Gi by Proposition 4.8, and let fi : Gi → Hi
X

be the isomorphism defined by fi(gi) = {0+ gi, gi}, gi ∈ Gi, see the proof of
Proposition 4.8. If we define a mapping ĥ : H1

X → H2
X by f̂({0 + g1, g1}) =

{0+h(g1), h(g1)} (g1 ∈ G1), it is possible to show that ĥ is a homomorphism.
Put h̃ = f−1

2 ◦ ĥ ◦ f̃1, then h̃ is a homomorphism from G1 to G2 such that
R(h̃) = h.

Faithfulness. Let h1, h2 : G1 → G2 be two homomorphisms of symmetric
quasi �-groups such that R(h1) = R(h2). That is, h1(g1 + 0) = h2(g1 + 0),
g1 ∈ G1. As in the former paragraph, we can show that {0+h1(g1), h1(g1)} =
{0 + h2(g1), h2(g1)}, g1 ∈ G1, giving h1 = h2. It means, R is faithful.

Let G be an Abelian �-group. Since G is trivially a symmetric quasi �-
group, then R(G) = G + 0 = G, R(G) is isomorphic to G. Due to [20, Thm
IV.1], R defines a categorical equivalence.

Finally, we have the following corollary

Corollary 6.8. The categories PQMV, PQMVn, SQLG, PMV, PMVn, and
LG are mutually categorically equivalent.

Proof. It follows from Theorem 5.8, Theorem 6.5, Corollary 6.6, and [10].
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