GEFAHRENPOTENTIAL VON GLETSCHERSEEN IN TIROL UNTER BETRACHTNAHME DEREN RÄUMLICHER UND ZEITLICHER ENTWICKLUNG

Masterarbeit

von

Sarah MERKL

Betreut von:

Univ.Prof. Dr.rer.nat. Markus FIEBIG

Dr. Martin MERGILI

Institut für Angewandte Geologie Department für Bautechnik und Naturgefahren

an der Universität für Bodenkultur
Wien, April 2015

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Masterarbeit ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch bei keiner anderen Prüferin/keinem anderen Prüfer als Prüfungsleistung eingereicht.

Mir ist bekannt, dass Zuwiderhandeln geahndet wird und weitere rechtliche Schritte nach sich ziehen kann.

Wien, April 2015 Sarah Merkl

Vorwort

"DANKESCHÖN!" an alle die mich bei der Erstellung dieser Masterarbeit unterstützt haben.

Ich bedanke mich bei meinen Betreuern Univ.Prof. Dr.rer.nat. Markus FIEBIG und Dr. Martin MERGILI. Sie haben mir ermöglicht, mich in das Thema der Gletschergefahren zu vertiefen und meine Masterarbeit darüber zu verfassen. Besonders schätzte ich ihr stetig rasches und konstruktives Feedback zu meiner Arbeit.

Ein besonderer Dank geht an Dr. Martin MERGILI der mich durch den gesamten Arbeitsprozess begleitete. Durch Erstinformationen über die Materie, gemeinsame Begehungen zu Seen, Anwendung des Programmes r.glof und laufend hilfreicher Kritik, unterstützte er den Fortschritt der Arbeit. Zusätzlich ermutigte er mich, die Forschungsergebnisse auf der EGU-Generalversammlung in Wien (2015) zu präsentieren.

Bedanken will ich mich bei meinem Forschungskollegen Adam Emmer. Auch er erklomm Berge mit mir und brachte vergleichende Aspekte aus dem Untersuchungsgebiet Peru ein.

Ein großes "Dankeschön" geht an meinen Freund, meine Familie und alle meine tollen Freunde. Jeder und jede einzelne hat mich auf seine und ihre eigene Art motiviert. Ob durch Diskussionen zur Thematik, mit Spaziergängen im Park, gemeinsamen Arbeiten im Weingarten, familiären Essen, Fußballspielen, Ruhe (wenn ich sie brauchte),… oder andern Aktivitäten, unterstützten mich alle beim Forschen und Niederschreiben der Ergebnisse.

Abstract

Global warming causes shrinking of glaciers which again induces the formation of lakes on or in front of the retreating or decaying tounges. Because of the dynamic change of the morphology, cryo- and hydrosphere recently deglaciated mountain regions are hazardous. This development is investigated and documented for the 3,378 km² study area in western Austria, followed by a hazard estimation of potential lake outburst floods.

The high-mountain lake inventory created in the present study contains information on 1045 mapped lakes, with a surface larger than 250 m² and an elevation higher than 2000 m asl. Besides the spatial distribution also glacier contact, water outflow properties, and lake type are documented. Half of the lakes (534; 51%) are impounded by moraine material, 481 lakes (46%) have a bedrock, 8 lakes (1%) an ice and one single lake a landslide dam. 21 lakes (2%) are of anthropogenic origin. Just one third (338; 33%) of all lakes are located within lately glaciated region. 17% could be affected by permafrost, 13% are in indirect and 4% in direct contact with current glaciers. The study area is characterized by a large number of small lakes. The average lakes density is 31 lakes/100km² and the median of the lake surface is 1500 m². Another characteristic is the varying distribution of lake types with changing elevation. The ratio of rock dammed lakes increases with rising elevation, whilst the ratio of debris dammed lakes decreases.

For a temporal analysis, series of historic aerial photographs of five selected lakes resp. lake complexes were used. Differences do not only appear between lake types (moraine material, bedrock, ice dam), but also in different stages of development. Starting with the first formation in the proglacial stage, steady lake growth increases the danger of glacial lake outburst floods (GLOF). The following periglacial stage is embossed by stabilization of the lake and its surroundings until the lake loses any contact to the mother glacier. Finally the decoupled lake in the non-glacial stage displays a decreased outburst hazard.

With the software r.glof it is possible to approximate the susceptibility and hazardousness of lake outburst floods at a regional scale for the entire study area. Just one natural lake, Lake Fleischbach in Eastern Tyrol, was classified as very hazardous. The results indicate that a GLOF could be triggered by mass movements in the catchment rather than by a dam failure. Another 29 lakes are classified as medium hazardous. Additionally the Hazard Impact of possible flood waves was considered. Again Lake Fleischbach displays a very high hazard indication score. The model results indicate that 23 lakes are at a high hazard to produce flood waves or debris flows reaching the bottom of the underlying main valley. Further studies are needed to calculate the risk for the identified potentially harmful lakes using physically based models and socio-economic data.

Kurzfassung

Rezent von Gletschern geformte Seen bergen Gefahren, vor allem, da sie in einem sich stark wandelnden Gebiet liegen. Als Folge der Klimaerwärmung schmelzen Gletscher ab und Seen entstehen. Diese Entwicklung wird anhand des 3378 km² großen Untersuchungsgebiets im westlichen Österreich dargestellt um anschließend das Gefahrenpotential von Seeausbrüchen (GLOF) zu berechnen.

Es wurde ein Inventar erstellt, welches Informationen zu 1045 Hochgebirgsseen enthält. Nur Seen einer Oberfläche >250 m² oberhalb von 2000 m ü.A. wurden berücksichtigt. Neben der räumlichen Verteilung sind der Gletscherkontakt, die Abflussverhältnisse und die Seetypen dokumentiert. Die Hälfte der Seen (534, 51%) sind durch Moränenmaterial gedämmt, 481 Seen (46%) sind felsgedämmt, 8 Seen (1%) eisgedämmt, 1 See durch eine Massenbewegung und 21 Seen (2%) anthropogenen gestaut. Ein Drittel (338, 33%) aller Seen liegen in kürzlich von Gletschern überprägtem Terrain, 17% in möglichen Permafrostflächen, 13% haben indirekten und 4% direkten Kontakt zum Gletscher. Das Untersuchungsgebiet charakterisiert sich durch eine Vielzahl kleinerer Seen, wobei es eine durchschnittlich Seendichte von 31 Seen/100km² aufweist und der Median der Oberfläche bei 1500 m² liegt. Zusätzlich erkennbar ist, dass in tieferen Lagen der Anteil an moränengedämmten Seen überwiegt, dagegen in höheren Lagen die Felsgedämmten überhand nehmen.

Um Wissen, auch aus einer zeitlichen Betrachtung zu extrahieren, wurden fünf ausgewählte Seen bzw. Seekomplexe mittels Serien historischer Luftbilder analysiert. Unterschiede zeigen sich natürlich zwischen den verschiedene Seetypen (fels-/ moränen-/ eisgedämmt), vor allem aber in den verschiedenen Entwicklungsphasen. Von der Entstehung an, mit stetigem Seewachstum, steigt die Gefahr eines Seeausbruches, darauf folgt die Phase der Stabilisierung von Damm und umliegenden Gelände. Mit der Zeit kommt es zum Verlust jeglichen Gletscherkontakts, also einer Entkopplung von glazialen Einflüssen und damit zu einer geringen Seeausbruchgefahr.

Das Programm r.glof wurde herangezogen um eine großflächige Gefahrenabschätzung zu erstellen und daraus Seen zu erfassen von denen eine erhöhte Gefahr auszubrechen ausgeht. Dem Fleischbachsee in Osttirol wurde als einzigem natürlichen See eine hohe Gefahrenstufe zugeordnet. Aus den Teilergebnissen geht hervor, dass ein Ausbruch eher durch Massenbewegungen aus dem Einzugsgebiet, als durch ein Dammversagen begründet ist. Eine mittlere Ausbruchsgefahr wird weiteren 29 Seen zugeschreiben. Davon zu unterscheiden ist die mögliche Intensität der Auswirkungen einer Flutwelle talab. Diese wird wiederum für den Fleischbachsee als sehr hoch eingestuft. Hoch gefährlich könnte der Ausbruch von 23 Seen sein, deren Ausbreitungsflächen auch besiedelten Talboden miteinschließen. Für die identifizierten Seen wäre ein notwendiger nächster Schritt Detailuntersuchungen mit physikalisch basierten Modellen, unter Berücksichtigung sozioökonomischer Faktoren durchzuführen.

Inhaltsverzeichnis

1	Ein	leit	ung	1
	1.1	M	lotivation - Das Kommen und Gehen des Vernagtferners	1
	1.2	W	/issensstand und Problemstellung - Gletscherforschung weltweit und in Österreich	2
	1.3	Zi	elsetzung und Aufbau der Arbeit	2
	1.3	3.1	Inventarisierung aller Hochgebirgsseen	3
	1.3	3.2	Analyse der Entwicklung ausgewählter Gletscherseen	3
	1.3	3.3	Beurteilung des Gefahrenpotentials	3
2	Gle	etsc	hergefahren und Gletschergefahrenanalyse	4
	2.1	G	letscherrückzug seit der Kleinen Eiszeit	4
	2.2	G	efahren durch Gletscherschwund	6
	2.2	2.1	Massenbewegungen	6
	2.2	2.2	Gletscherflutwellen	8
	2.2	2.3	Gletscherlängenänderungen	9
	2.3	Fa	allbeispiele	10
	2.3	3.1	Kolumbien, Lahar 1985 (nach Voight, 1990)	10
	2.3	3.2	Tajikistan, Gletscher-See-Ausbruch / GLOF, 2002 (nach Mergili et al., 2012a)	11
	2.4	G	efahren- und Risikomanagement	11
	2.4	.1	Gefahrenidentifikation	13
	2.4	.2	Gefahrenbeurteilung	13
	2.4	.3	Risikoeinschätzung	14
	2.4	.4	Gefahren- und Risiko-Minimierung	14
	2.4	.5	Monitoring	14
3	Un	ters	suchungsgebiet	15
	3.1	G	eologie und Morphologie	15
	3.2	ΚI	ima und Gletscher	17

	3.3	Besiedlung und Vulnerabilität	18
	3.4	Historische Ereignisse	18
4	Mat	erialien und Methoden	. 22
	4.1	Inventarisierung von Hochgebirgsseen	22
	4.1.	1 Datengrundlage	. 22
	4.1.	2 Datenverarbeitung	. 23
	4.2	Analyse der Entwicklung ausgewählter Gletscherseen	29
	4.2.	1 Datengrundlage	. 29
	4.2.	2 Datenverarbeitung	. 30
	4.3	Beurteilung des Gefahrenpotentials	30
	4.3.	1 Datengrundlagen	. 31
	4.3.	2 Datenverarbeitung mit dem GIS-basierten Programm r.glof	. 32
5	Erge	ebnisse und Diskussion	. 34
	5.1	Inventarisierung von Hochgebirgsseen	34
		A3 Einlage 1: Räumliche Verteilung der Hochgebirgsseen	
	5.2	Analyse der Entwicklung ausgewählter Seen	41
	5.2.	1 Vogelhüttenseenkomplex	. 42
	5.2.	2 Berglassee	. 44
	5.2.	3 Ölgrubensee und Weißmaurachsee	. 45
	5.2.	4 Schweikertsee	. 47
	5.2.	5 Fleischbachsee	. 48
	5.3	Beurteilung des Gefahrenpotentials	49
	5.3.	1 Allgemeine Ergebnisse	. 50
		A3 Einlage 2: Seeausbruchgefahr und Gefahrenauswirkung	
	5.3.		
	5.3.	3 Schweikertsee	. 53
	5.3.	4 Weißmaurachsee	. 54

6	Folg	gerungen und Ausblick	55
	6.1	Inventarisierung von Hochgebirgsseen	. 55
	6.2	Analyse der Entwicklung ausgewählter Seen	. 55
	6.3	Beurteilung des Gefahrenpotentials	. 55
7	Lite	raturverzeichnis	57
8	Anh	ang	A
	8.1	Legende und Datenbank des Seeninventars	A
	8.2	EGU General Assembly 2015 – Abstract	R
	8.3	EGU General Assembly 2015 – Presentation	S

1 Einleitung

1.1 Motivation - Das Kommen und Gehen des Vernagtferners

Was hatten die Bewohner des Rofentals, tief drin im Ötztal, wohl gefühlt als um 1600 die Vernagt-Gletscherzunge zum Talboden herabwuchs und sich dahinter ein See staute dessen Damm aus purem Eis bestand. Es dürfte eine außergewöhnliche Entwicklung gewesen sein, da von dieser Zeit die ersten Federzeichnungen des Eisstausees bestehen (Abbildung 1.1). Dieser erreichte bei einer überlieferten Länge von ca. 1700 m (Nicolussi, 2013; S. 72) eine abgeleitete maximale Tiefe von über 100 m. Ein gewaltiger Wasserdruck dem das Eis widerstand. Doch die Wassermassen fanden eine Schwachstelle, welche am 20. Juli 1600 eine gewaltige Flutwelle verursachte die im ganzen Ötztal eine Spur der Verwüstung hinterließ (Zryd 2008; Hoinkes, 1969).

Solch rasche Gletschervorstöße wiederholten sich in den Jahren um 1678, 1772 und 1847. Der gebildete See entleerte sich mehrmals mit unterschiedlichster Intensität. Ohne einer Möglichkeit Einfluss auf das Geschehen zu nehmen, musste die Bevölkerung die Entwicklungen hinnehmen und hoffen von möglichen Auswirkungen verschont zu bleiben.

Abbildung 1.1 Der bis zum Talboden herabgewachsene Vernagtferner staute einen Eissee am Ende des Rofentals auf. Noch bevor der See ausbrach wurde das Phänomen bildlich festgehalten. 9. Juli 1601, nach Abraham Jäger. Aquarellierte Federzeichnung, 220x525 mm (Tiroler Landesmuseum Ferdinandeum; Nicolussi, 2013)

1.2 Wissensstand und Problemstellung - Gletscherforschung weltweit und in Österreich

Die Landschaft der Alpen steht in ständigem Wandel. Ein prägendes Element stellt die Ausbreitung der Gletscher dar, welche sich zur heutigen Zeit im Rückzug befinden. Unabhängig davon ob sie wachsen oder schwinden, beeinflusst dieser Wandel die im alpinen Raum lebende Bevölkerung. Zur Zeit des Eisstausees am Vernagtferner war man den Kräften der Natur hilflos ausgeliefert. Auch heute kann man nicht jede Gefahr abwenden, aber durch die Erforschung der entsprechenden Phänomene und, darauf aufbauend, das Setzen von angepassten Maßnahmen können Risiken gemindert werden. Alleine durch die Analyse historischer Ereignisse, das Auffinden sensibler Gebiete mittels Fernerkundung und Aufklärung der möglich Betroffenen, ist ein großer Schritt getan. Bei Eingrenzung des Gefahrenbereiches oder Identifizierung potentieller auslösender Mechanismen durch Begehung und Modellierung verbessert sich die Situation weiter. In manchen Fällen ist es möglich, eine Sicherung durch Schutzbauwerke im Gefährdungsbereich und/oder entspannende Maßnahmen im Problemgebiet zu erreichen.

Fakt ist, dass Gletscherrisiken, dort wo Gletscher zu finden sind, weltweit auftreten und darüber geforscht wird: Anden (z.B. Lliboutry et al., 1977; Zapata, 1984; Reynolds, 1992; Ames, 1998; Vilímek et al., 2005; Harrison et al., 2006; Carey et al., 2011; Emmer und Cochanchin, 2013), Nordamerikanische Rocky Mountains (z.B. Clarke, 1982; Clague und Evans, 2000; Kershaw, 2005), Himalaya (z.B. Vuichard und Zimmermann, 1987; Richardson und Reynolds, 2000; Kattelmann und Watanabe, 1997), Pamir (z.B. Mergili und Schneider, 2011), Kaukasus (z.B. Petrakov et al., 2007) Norwegische Gebirge (z.B. Breien et al., 2008) und Europäische West-Alpen (z.B. Haeberli, 2001).

Gletschergefahren, speziell durch Gletscherseen, sind in Österreich gering erforscht. Ein Grund dafür sind vermutlich die verhältnissmäßig kleinen Dimensionen unserer Gletscher, welche sich über eine Fläche von 470 km² (Stand 1998; Lambrecht und Kuhn, 2007) ausbreiten. Dies entspricht einem Sechstel der gesamten Alpengletscher (Zemp et al., 2006), die Hälfte der Gletscherfläche Perus, oder lediglich einem Hundertstel der chinesischen Gletscher (Ohmura, 2009). Im Programm "GlacioRisk" zur Beobachung und Prävention extremer Gletschergefahren der europäischen Gebirgsregionen (2000-2003), findet sich auch Österreich als Untersuchungsgebiet (GlacioRisk, 2003). Somit existiert eine Zusammenstellung aller historischen Ereignisse, in Bezug auf zukünftige Gefahren liegen jedoch keine detaillierten Ergebnisse vor.

1.3 Zielsetzung und Aufbau der Arbeit

Die angesprochenen Forschungslücken werde ich mit der vorliegenden Arbeit minimieren. Vor der eigentlichen Gefahrenanalyse ist es wichtig ablaufende Prozesse zu verstehen und Charakteristiken des Untersuchungsgebiets Tirol zu erkennen. Hierfür gehe ich auf die Gletschersee-Entwicklung und deren räumliche Verteilung von Hochgebirgsseen ein. Dieser Bearbeitungsablauf wird strukturiert in drei Hauptbereiche. Abbildung 1.2 erleichtert es, die Arbeitsschritte mit den zugehörigen Methoden und Teilzielen schnell zu erfassen.

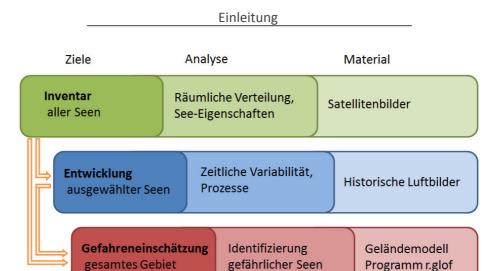


Abbildung 1.2 Workflow-Diagramm zur Darstellung der Arbeitsschritte. Der Einschätzung des Gefahrenpotentials Tiroler Gletscherseen geht eine Analyse der räumlichen Verteilung und der zeitlichen Entwicklung voran.

1.3.1 Inventarisierung aller Hochgebirgsseen

Das Inventar dient in erster Linie um die Charakteristiken des Alpenraums in Bezug auf Gletscherseen zu erkennen. Darum wird neben der fernerkundlichen Kartierung aller hochgelegenen Seen eine Datenbank erstellt, welche wichtige Eigenschaften enthält. Festgehalten werden Details über Gletscherkontakt, Abflussverhältnisse und Dammmaterial. Mit den gesammelten Informationen können Besonderheiten der Seetypenverteilung in Zusammenhang mit der Höhenlage und der Seegröße aufgezeigt werden.

1.3.2 Analyse der Entwicklung ausgewählter Gletscherseen

Abgesehen von der räumlichen Ebene ist auch auf die zeitliche besonderes Augenmerk zu legen. Die Seen entstehen in stark dynamisch geprägten Gebieten, deshalb ist es von Bedeutung deren plötzliches Erscheinen, Anwachsen, Schrumpfen oder allgemein, deren Entwicklung zu verstehen. Zu diesem Zweck werden Zeitreihen historischer Luftbilder herangezogen. Diese Analyse hilft die Prozesse der Stabilisierung oder Destabilisierung in verschiedenen Entwicklungsphasen zu verstehen.

1.3.3 Beurteilung des Gefahrenpotentials

Vorerst wird eine großflächige Berechnung des Gefahrenpotentials aller Seen durchgeführt. In die Analyse fließen Parameter der Seen selbst und des umliegenden Geländes ein. Damit ist eine allgemeine Tendenz der Gefahr durch Seeausbrüche im Untersuchungsgebiet darstellbar.

Mit den Ergebnissen und dem Wissen aller vorangegangenen Schritte werden Seen selektiert denen ein gewisses Gefahrenpotential nicht abgesprochen werden kann. Von diesen werden mögliche Auswirkungen gezeigt und wahrscheinliche Auslösemechanismen besprochen. Schlussendlich hat man eine Vorstellung von der Gefährdung die von Gletscherseeausbrüchen in Tirol ausgeht.

2 Gletschergefahren und Gletschergefahrenanalyse

Der entscheidende Prozess, welcher mit Gletschergefahren einhergeht ist die dynamische Veränderung von Gletschern und deren beeinflusste Gebiete. Wie aus dem umrissenen Vernagt-Unglück hervorgeht (Kapitel 1.1), können Gletschervorstöße verheerende Folgen haben. Aktuell ist definitiv eine gegenteilige Entwicklung ausschlaggebend für Risiken aus dem Gebirge. Weltweit zeigt sich seit dem Ende der Kleinen Eiszeit, Mitte des 19. Jahrhunderts, ein negativer Trend der Gletschermassenbilanzen. Dieser Rückzug kann ebenso katastrophale Ereignisse und Schäden hervorbringen.

Es ist nicht möglich den Beginn der Gletschergefahrenforschung mit genauen Jahreszahlen zu betiteln. Vermutlich haben sich Menschen schon mit den ersten Flutwellen oder Stürzen von Eismassen aus den Bergen den Kopf über mögliche Ursachen zerbrochen. Zu dieser Zeit wurden vielerorts höhere Mächte, der Teufel oder gar die Apokalypse als Erklärung herangezogen (Meier, 2015). Jetzt, mit gestiegenem naturwissenschaftlichen Verständnis werden andere Gründe gefunden. Durch dieses Wissen, die fortgeschrittene Erforschung von Gletschergefahren und daraus folgend, die Möglichkeit mit Risiken umzugehen, können größere Schäden und Verlust von Menschenleben abgewendet werden.

Es folgt eine Beschreibung der Gletscherdynamik seit der Kleinen Eiszeit, und der Bedrohung die durch diese Entwicklung entstand, verdeutlicht durch rezente Ereignisse. Ergänzend werden verschiedene Bewegungen zum Risikomanagement von Gefahren durch Gletscher dargestellt.

2.1 Gletscherrückzug seit der Kleinen Eiszeit

Seit dem Ende der letzten Eiszeit, der Würm-Eiszeit im Alpenraum, befinden wir uns in einer "relativ gemäßigten" Warmzeit, dem Holozän (MIS 1; Österreichische Stratigraphische Kommission, 2004). Der Ausdruck "relativ gemäßigt" wird verwendet, da sich innerhalb dieser durchschnittlich warmen Epoche, wiederholt Kälteperioden ausbreiteten wie in Abbildung 2.1 ersichtlich ist.

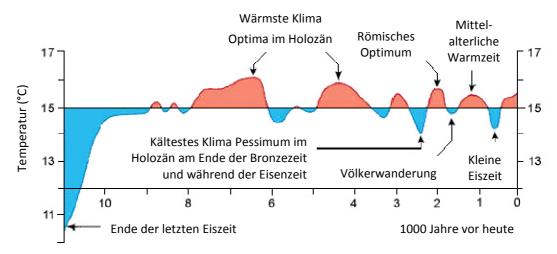


Abbildung 2.1 Auftreten von Klima-Optima und -Pessima im Holozän (nach: Kehl, 2008). Das chronologisch letzte Pessimum stellt die Kleine Eiszeit dar, während derer die 1850er Moränen entstanden, welche heute oft noch gut erkennbar sind.

Den letzten erkennbaren Ausbruch nach unten bildet die Kleine Eiszeit, deren Ende vor ca. 160 Jahren, Mitte des 19. Jahrhundert angesiedelt ist (Fischer und Hartl, 2013). Von diesem Zeitpunkt an, zufällig auch dem Beginn der instrumentellen Temperatur- und Klimaaufzeichnung, erwärmt sich das Klima (IPCC, 2014). Dies ist einerseits durch das Ausklingen der Kleinen Eiszeit, und andererseits durch das Einwirken des Menschen zu erklären. Mit diesem positiven Temperaturtrend geht ein negativer Eismassentrend einher. Trotzdem sind heute noch die Spuren ehemaliger Gletscherhöchststände erkennbar, die sogenannte "1850er Moräne" zieht unterbrochene Linien durch den Alpenraum. Eine Moräne, als Ablagerung von gletschertransportiertem Schuttmaterial, markiert die letzte Maximalausdehnung der Gletscherzunge. Das talauf liegende Gelände ist von den Kräften des Eises und Wassers überprägt. Um die Wandlungen speziell in diesem Bereich handelt die vorliegende Arbeit.

Abbildung 2.2 Gletschergeformtes Gebiet im Pitztal (Tirol; Bild: Google Earth). Einerseits sind die rezent eisfrei gewordenen Flächen durch fehlende Vegetation erkennbar, anderseits findet man hier typische Strukturen, wie Moränen, Blockgletscher und Gletscherseen.

2.2 Gefahren durch Gletscherschwund

Die frisch freigelegte Region, welche durch das schmelzende Eis zu Tage kommt, zeichnet sich durch eine starke Dynamik aus. Nicht nur die erodierende Wirkung von Schmelzwasser, sondern auch das Abtauen von Permafrost und die fehlende Vegetation tragen zur Destabilisierung der Hänge bei. Vor allem gehen Gefahren vom Gletschereis selbst und von gebildeten Seen im steilen Gelände aus. Eine Übersicht und Klassifizierung dieser Prozesse wurde von Reynolds (2003) erstellt:

Gefahrenkategorie	Prozessart	Begriffe	Prozessdauer
	Eislawine	Ice avalanche	Minuten
Massenbewegungen	Felslawine/Sturzstrom	Rock avalanche	Minuten
	Murgang	Debris flow, Aluvión	Stunden
Gletscherflutwellen	Gletschertaschenausbruch	Glacier outburst	Stunden
Gietschernutweilen	Gletscherseeausbruch	GLOF (moraine or ice dam)	Stunden
	Gletscherschwankung	Glacier fluctuations	Jahre
Längenänderungen	Galoppierender Gletscher	Glacier surge	Monate

Tabelle 2.1 Klassifizierung von Gletschergefahren nach Reynolds (2003)

Solch eine Einteilung ist von Vorteil um eine Vorstellung von möglichen Ereignissen zu bekommen. Tatsache ist, dass viele dieser Prozesse in Kombination auftreten oder regelrechte Kettenreaktionen verursachen und eine eindeutige Zuordnung nicht mehr gegeben ist. Ein weiterer Aspekt, der nicht in der Tabelle aufscheint, sind Gefahren welche mittelbar durch die Gletscherdynamik entstehen (Richardson und Reynolds, 2000). Die aufgezählten Bedrohungen, also direkte, kombinierte und indirekte werden nun folgend erläutert.

2.2.1 Massenbewegungen

Unter den Begriff "Massenbewegung" fällt eine Vielzahl von Prozessen, welche häufig nach Versagensart, Ausgangsmaterial, Prozessgeschwindigkeit und Ereignisgröße eingeteilt werden. Die Gliederung der betroffenen Flächen in Anriss-, Transit- und Ablagerungsgebiet sind speziell in Hinsicht auf zu setzende Schutzmaßnahmen zu unterscheiden, da für jeden Bereich unterschiedliche Eingriffe effizient wirken. Im Zusammenhang mit Gletscher sind die drei Prozesse "Eislawinen", "Felslawinen" und "Murgang" von besonderer Bedeutung.

Wenn die **Eislawine** nach den erwähnten Kriterien beschrieben wird, handelt es sich um ein schlagartiges Abbrechen von Eismassen der Dimension von mehreren m³ bis wenigen km³. Prinzipiell ist mit einem Versagen des Eiszusammenhalts nur an steilen Hängen zu rechnen. Nach Kipp-Typ, Gleit-Typ und Felsbasis-Typ wird an Hand des Anrisses differenziert (Abbildung 2.3; Perla, 1980). Da es nur zu einem Kippversagen kommt, wenn die Topografie entsprechend ist, wird diese Abbruchsart auch "Kantentyp" genannt. Genauso verhält es sich mit dem Gleitversagen, wofür auch "Rampentyp" gebräuchlich ist (Frey, 2011).

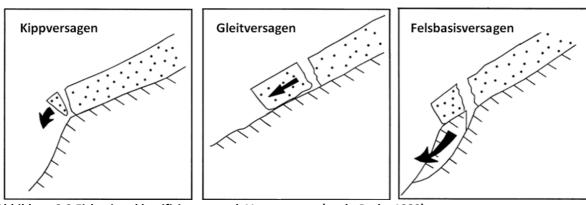
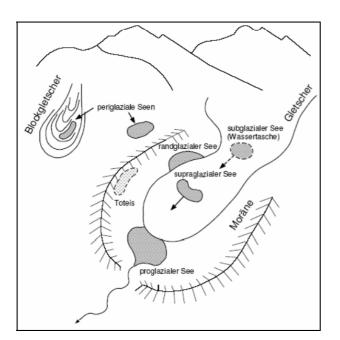


Abbildung 2.3 Eislawinenklassifizierung nach Versagensart (nach: Perla, 1980).

Mit der letzteren Versagensart, dem Felsbasisbruch, geht häufig Steinschlag einher bzw. kann es zu einer Mischform von Eis- und Felslawine kommen.


Es scheint auf den ersten Blick vielleicht unpassend **Felslawinen** zu den Gletschergefahren zu zählen, da sie häufig durch Erdbeben ausgelöst werden. Jedoch können auch Gletscherbewegungen in verschiedensten Fällen in Zusammenhang mit Felsinstabilität stehen. Um diesen Begriff korrekt anzuwenden, kann die "Felslawine" auch als sekundäre Gletschergefahr bezeichnet werden, da sich diese oft als verzögerte Reaktion auf Eismassenänderung bildet. Im verheerendsten Ausmaß kennt man das Phänomen des Bergsturzes, welcher von gesamten Bergflanken ausgeht. Durch das fehlende Widerlager und die Entspannung im Berg können Massen von mehreren Millionen m³ bis wenigen km³ ins Tal stürzen (z.B.: Körfgen, 2014). Alltäglicher ist jedoch das Lösen von Felsen durch Abtauen von Permafrost (Klug, 2006; Krautblatter et al., 2012). Dabei wirken neben der verringerten Verbundwirkung des gefrorenen Kittmaterials, auch die Veränderungen der hydrologischen Bedingungen. Wenn das aufgetaute Wasser keine Möglichkeit hat abzufließen, bildet sich eine zusätzliche Destabilisierung durch den gesättigten Untergrund. Dieser Zustand kann bei einem Überangebot von Flüssigkeit ebenfalls zu einem Murgang führen.

Muren entstehen in erster Linie durch Starkniederschläge wenn das entsprechende Gebiet abgelagertes Material für den Transport bietet. In glazial geprägtem Terrain werden Muren, wie erwähnt, durch Felslawinen aber auch durch Eislawinen, Gletschertaschen- oder Seenausbrüche ausgelöst (Reynolds, 2003). Faszinierend an diesem Prozess ist, dass die hohe Dichte des Murkopfes (bis 2,4 t/m³; Hübl et al., 2003) ermöglicht, große Felsblöcke zu transportieren und damit zerstörerische Anprallkräfte hervorbringt.

Die beschriebenen Gefährdungen können auch ohne Einfluss von Gletscherbewegungen entstehen. So gibt es als weitere mögliche Ursachen Extremniederschläge in Form von Schnee oder Regen, seismische oder vulkanische Aktivitäten.

2.2.2 Gletscherflutwellen

Auch wenn vulkanische Aktivitäten derzeit in Österreich keine Rolle spielen, bringen diese natürlichen Kräfte zum Beispiel in Südamerika imposante und katastrophale Ereignisse hervor. Dieses Phänomen, auch Jökulhlaup genannt ist die einzige glaziale Flutwellenart wo vor dem Geschehen nicht zwingend ein Wasserreservoir bestehen muss. Durch vulkanische Erhitzung des Gletschers sammeln sich Schmelzwassermengen an, diese entladen dann teils schwallartig ins Vorland. Ein markanter Vulkanausbruch ereignete sich 1985 um den Nevado del Ruiz in Kolumbien. In den Alpen kann man davon ausgehen, dass Flutwellen aus dem Gebirge einer Wasserspeicherung in Form von Seen oder Wassertaschen bedürfen. Man unterscheidet nach Lage des Wasserspeichers oder dem eindämmenden Material.

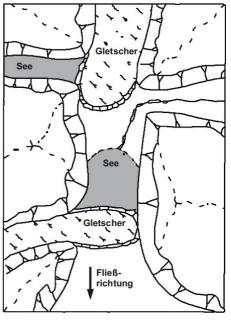


Abbildung 2.4 Benennung der Wasserressourcen nach deren Lage bezogen auf den Gletscher (Flubacher, 2007 und nach: Walder und Costa, 1996). Diese Lage ist meist ein Indikator für das mögliche Dammmaterial wie in Tabelle 2.2 aufgelistet steht.

Lage des Sees	Dammmaterial
sub-/en-/supraglazial	Gletschereis
randglazial	Gletschereis und Moräne
proglazial	Moräne (evtl. mit Toteis) oder Fels
periglazial	Moräne/Lockermaterial oder Fels

Tabelle 2.2 Übersicht der Seelage und des wahrscheinlichen Dammtyps.

Moränen- und eisgestaute Seen bergen, auf Grund des Dammmaterials und wegen der Wasserversorgung die größte Gefahr auszubrechen. Insofern ist die Lage zum Gletscher wichtig, als Seen kontinuierlich von Schmelzwasser gespeist werden, oder nur von Niederschlagswässern leben. Dieses Wasseraufkommen ist einer der wichtigsten Einflussfaktoren des Versagens eines Dammes. Ein Gletscherseeausbruch ist international unter dem Begriff "Glacial Lake Outburst Flood", kurz "GLOF" bekannt und kann sich als Flutwelle oder Murgang ins Tal hinabbewegen. Unterschieden nach Dammtyp werden die Bruchmechanismen einzeln angesprochen (nach Richardson und Reynolds, 2000).

Eisgedämmter See

Ein übliches Damm-Bruch-Szenario ergibt sich aus stetiger Erosion auf Grund des Über- oder Durchfließen des Dammes. Viele kleine Abflussrinnen und -röhren können sich durch die mechanische Belastung zusehends vergrößern oder vereinigen. Zusätzlich strapazierend wirkt das aufprallende Wasser nahe dem Dammfuß. Das geht so weit, bis die Schwächung des Dammes zu einem schlagartigen Bruch führt. Möglich ist ebenfalls, dass bei steigendem Wasserspiegel die Auftriebswirkung auf den Dammkörper eine Hebung bewirkt und Schwalle subglazial entwässern.

Moränengedämmter See

Auch bei Moränen gestauten Seen ist die Erosion durch Überfließen der Dammkrone problematisch. Oft steht ein auslösendes Ereignis, wie eine Massenbewegung in den See, in Verbindung mit einem Ausbruch. Nach der ersten Beschädigung durch das Überschwappen, kann sich eine Erosionsrinne bilden und weiter eintiefen. Wenn das stauende Moränenmaterial dem hydrostatischen Druck nicht mehr standhält kommt es zu einem Dammversagen. Teilweise wird auch das kalben des Gletschereises kritisch gesehen (z.B.: Kattelmann, 2003), allgemein ist die Wellenbildung meist so gering, dass dies alleine nicht als Auslösemechanismus reicht.

Felsgedämmter See

Im Vergleich zu den vorangegangenen Flutszenarien, ist es bei Festgestein unwahrscheinlich, dass der Damm bricht und sich dabei das gesamte Seevolumen entleert. Vorhersehbar sind wiederum Ereignisse, welche Wasser aus dem See verdrängen und zum Überschwappen bringen, also durch eine Kombination der genannten Gletschergefahren. Dazu zählen hauptsächlich Eislawinen, Felsstürze und andere rasch ablaufende Massenbewegungen.

2.2.3 Gletscherlängenänderungen

Wenn Längenänderungen nicht in extrem beschleunigtem Ausmaß als sogenannte Surge auftreten, sind sie vorwiegend als indirekt wirkende Gefahren zu sehen. Gletscherschwund bedeutet für manche Regionen der Erde einen Schwund an Süßwasserreserven. Die Klimaerwärmung hat in erster Linie Auswirkungen auf die landwirtschaftliche Bewässerung und Energiegewinnung mittels Wasserkraft (Mergili et al., 2012b).

Gletschersurge

Beschrieben wird dieses Phänomen, auch galoppierender Gletscher genannt, als zyklisch auftretende Beschleunigung der Gletscherfließgeschwindigkeit. Übliche Geschwindigkeiten bewegen sich von mehreren zehn bis wenigen hundert Meter pro Jahr. Besondere Beschleunigungsphasen lassen Eismassen bis zu hundert Meter pro Tag fließen. Dokumentiert ist um 1900 die Bewegung eines Gletschers im Karakorum von 3,2 km in nur 8 Tagen. Dieses Naturschauspiel mit allen seinen Randbedingungen und induzierenden Faktoren ist noch nicht restlos geklärt. Nur etwa ein Prozent aller Gletscher weltweit wurden als Surge-Typ identifiziert (Copland et al., 2011; Jiskoot et al., 2000).

Abbildung 2.5 Der Medvedji Gletscher im hinteren Vanj-Tal im tadschikischen Pamir ist durch sein Surgeverhalten bekannt. Die Abbildung zeigt den Gletscher in solch einer Phase im August 2011. (Bild: Martin Mergili).

Um das Thema der Gletschergefahren umfassend zu behandeln, ist auf einen letzten wichtigen Aspekt hinzuweisen. Nicht nur Extremereignisse, sondern genauso Ereignisse mit geringer Intensität aber großer Häufigkeit sorgen für Schäden (z.B.: Verschlammte Häuser, Ernteausfälle, Isolation durch beschädigte Verkehrs- oder Telekommunikationsnetze). Über eine lange Zeitspanne betrachtet, können diese gleichwertige Folgen haben wie einmalige heftige Vorfälle. Wirkungen und Belastungen beeinflussen dabei überwiegend soziale und wirtschaftliche Strukturen (MacDonald, 1989).

2.3 Fallbeispiele

2.3.1 Kolumbien, Lahar 1985 (nach Voight, 1990)

Mit dem Ausbruch des Vulkans Nevado del Ruiz am 13. November 1985 schmolz seine Schnee- und

Eiskappe. Die Schmelzwassermengen formten einen Lahar enomen Ausmaßes, der ganze Städte, Infrastruktur und Agrarflächen unter sich begrub. Es gab über 20.000 Tote. Mehr als 5.000 Gebäude, darunter 50 Schulen, 2 Spitäler, 58 Fabriken und 343 gewerbliche Niederlassungen wurden dabei zerstört oder beschädigt.

Abbildung 2.6 Vulkanausbruch des Nevado del Ruiz, 1985. Bei dem Ausbruch des eisbedeckten Vulkans kam es durch das Schmelzwasser zu einem Schlammstrom der in der

Aufnahme gut zu erkennen ist (Bild: raptureimminent.wordpress.com).

2.3.2 Tajikistan, Gletscher-See-Ausbruch / GLOF, 2002 (nach Mergili et al., 2012a)

Ein, erst zwei Jahre zuvor gebildter, supraglazialer See brach am 7. August 2002 aus. Durch Rückstau und Entrainment vermehrte sich das ursprüngliche Seevolumen (ca. 300.000 m³), auf einen geschätzte 1 bis 1,5 Million m³ umfassenden Schlammstrom. Das 10 km talab liegende Dorf, Dasht wurde fast gänzlich zerstört und 25 Bewohner verloren ihr Leben.

Dieses und viele andere Ereignisse veranlassen nationale und internationale Organisationen sich mit dem Thema der Gletschergefahren auseinanderzusetzen, um das Risiko für die ansässige Bevölkerung zu verringern.

Abbildung 2.7 Das Dorf Dasht im Shakhdara Tal. Oben: Vor 2002 lag das Dorf an den Hangfuß anschließend (Bild: FOCUS Humanitarian Assistance). Unten: Nach dem GLOF sind kaum Anzeichen für das frühere Dorf zu sehen (Bild: Mergili et al., 2012a).

2.4 Gefahren- und Risikomanagement

Projekte zur Abwendung von Gletschergefahren basieren wie jedes komplette Gefahren- und Risikomanagement auf folgenden, aufeinander aufbauenden Phasen:

- Identifikation von potentiell gefährlichen Gletschern
- Bewertung des Risikos für Menschen oder Infrastruktur
- Risikoreduktion durch Setzen von Maßnahmen
- Monitoring um deren Wirkung zu überwachen

Man findet weltweit Organisationen und Programme, welche sich mit diesem Prozess oder Teilbereichen davon auseinandersetzen. Daran erkennt man die Dringlichkeit dieses Problems. Im Unterschied zu Europa und Nordamerika wo hauptsächlich heimische Forscher und Förderer arbeiten, sind in Südamerika und speziell Asien internationale Organisationen tätig. In der folgenden Tabelle sind einige Beispiele angeführt.

Land	Programm/Service	Beschreibung
weltweit	World Glacier	seit 1986; aus der Vereinigung von Permanent Service on
	Monitoring Service	Fluctuations of Glaciers (PSFG) und Temporal Technical
	(WGMS)	Secretary/World Glacier Inventory (TTS/WGI) entstanden;
		alle fünf Jahre Veröffentlichung des Berichts Fluctuations of
		Glaciers (FoG) über Gletscher weltweit

Land	Programm/Service	Beschreibung
weltweit	Web-based database on worldwide glacier and permafrost disasters	seit 2007; aus der Zusammenarbeit von Universität von Zürich und World Glacier Monitoring Service; wurde zur Sammlung von Gletscher- und Permafrostgefahren erstellt; www.mn.uio.no/english/research/groups/remotesensing/projects/gaphaz/database-old/index
Nepal und Bhutan	Glacial Lake Outburst Flood Monitoring and Early Warning System in Hindu Kush Himalayas	1999; koordiniert von Regional Resource Centre for Asia and the Pacific (RRC.AP) und finanziert von United Nations Environment Programme (UNEP) and Asian Institute of Technology (AIT); Inventarisierung von Gletscherseen, Monitoring an risikoreichen Seen und Implementierung von Frühwarnsystemen
Länder um den Himalaya	z.B.: Glacial Lakes and Glacial Lake Outburst Floods in Nepal	ausgehend von International Centre for Integrated Mountain Development (ICIMOD seit 1980ern); erarbeitet regionale Strategien zum Gebirgsgefahrenmangement
Tajikistan	Remote Geohazards Assessment and Modelling Consultancy in Tajikistan	2009-2010; unterstützt von FOCUS Humanitarian Assistance, Swiss Agency for Development and Cooperation (SDC) und UK Department for International Development (DFID); durchgeführt von der Universität für Bodenkultur (BOKU)
Peru	Glacier Hazards	1999; unterstützt von U.S. Department of the Interior and U.S. Geological Survey; Dokumentation historischer Gletschergefahrten und Maßnahmen
Europa	GlacioRisk - Survey and prevention of extreme glaciological hazards in European mountainous regions	2001-2003; Teilnehmende Länder: Frankreich, Italien, Norwegen, Island, Österreich und Schweiz; finanziert von European Commission (EC) und Research and Technogical Development activities of a generic nature; Inventarisierung historischer Gletschergefahren und Betrachtung heutiger Gefahren
allgemein	Development of glacial hazard and risk minimization protocols in rural environments	2000-2003; von <i>Reynolds Geo-Sciences Ltd</i> (RGSL) erarbeitet und von <i>Department for International Development</i> (DFID, UK government) finanziert; Richtlinien zur systematischen Gletscher-Gefahren-Minimierung

Tabelle 2.3 Programme und Organisationen im Bereich des Gletscherrisikomanagements

An Hand des letztgenannten Beispiels, angelehnt an die Ausführungen von Reynolds (2003) und Mergili und Schneider (2011), wird das Konzept des Risikomanagements speziell für GLOFs nun detaillierter dargestellt.

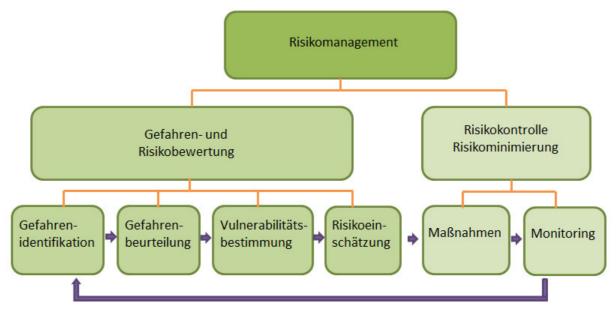


Abbildung 2.8 Risikomanagement und seine Teilprozesse (nach: Reynolds, 2003). Dieser Prozess ist im Detail betrachtet als Zyklus anzusehen, da ein Monitoringprogramm ebenso zur Gefahrenidentifikation fungiert.

2.4.1 Gefahrenidentifikation

Um Gefahren aufzufinden gibt es zwei äußerst effiziente Werkzeuge: Inventarisierung und historische Analyse (z.B.: GlacioRisk, 2003). Eine Bestandsaufnahme von Gletschern bzw. Gletscherseen bringt eine Sammlung von allen möglichen Gefahrenursprüngen. Wenn zusätzlich dazu die Beschaffenheit des Geländes dokumentiert wird, kann mit entsprechender Erfahrung eine erste Aussage zu Gefährdungen getroffen werden. Aus der Erforschung vergangener Ereignisse können wichtige Informationen gewonnen werden, wie morphologisch bedingte Versagensarten, Frequenzen und Magnituden, Ausbreitungswege und eventuell Versagensursachen.

2.4.2 Gefahrenbeurteilung

Um systematisch zu bewerten, ob von einem Gletscher oder einem See eine Gefahr ausgeht, kann wiederum das erstellte Inventar mit den gesammelten Seeeigenschaften herangezogen werden (z.B.: ICIMOD, 2011). Dabei ist zu beachten, dass nicht nur die Möglichkeit eines internen Versagens (Dammbruch) besteht, sondern auch die eines externen Auslösers (z.B.: Massenbewegung in einen See). So erhält man eine gewisse Ereigniswahrscheinlichkeit, wobei ferner die Ereignismagnitude und die damit einhergehende Ausbreitung von Relevanz sind. Diese Größen sind für jede Gefahrensart (ob Eislawine, Mure, Flut,...) spezifisch, und mit unterschiedlichen Methoden zu ermitteln.

2.4.3 Risikoeinschätzung

Damit aus einer Gefahr ein Risiko werden kann, benötigt es ein zu gefährdendes Gut. Dies sind im schlimmsten Fall Menschen aber auch Gebäude, landwirtschaftlich genutzte Flächen, Vieh und andere Infrastruktur. Vereinfacht dargestellt, ist ein Risiko gegeben, wenn in der Ausbreitungsfläche einer Naturgefahr wertvolles Gut liegt. Wie das Risiko oder der Schaden zu bewerten ist, hängt von Wert und Vulnerabilität des Gutes genauso wie von Frequenz und Magnitude des Ereignisses ab.

2.4.4 Gefahren- und Risiko-Minimierung

Ist aus der Analyse hervorgegangen, dass der Schaden ein nicht hinzunehmendes Maß erreicht, können Maßnahmen dagegen gesetzt werden. Hierbei kann einerseits an der Entstehung einer Gefahr, andererseits am Schadenspotential im Ausbreitungsgebiet, oder an beiden Seiten gearbeitet werden. Somit gibt es ein umfangreiches Paket an Maßnahmen, welche wiederum spezifisch für die Gefahrenart zu wählen sind. Einige Beispiele dazu sind:

<u>Am Entstehungsort</u> - kontrollierte Wasserabfuhr aus einem moränen- oder eisgedämmten See; Verstärkung des Dammes; Sicherung von Massenbewegungen;

<u>In der Transitzone</u> - bremsende Bauwerke wie Murbrecher; ablenkende Bauwerke wie Schutzwälle; speichernde Bauwerke wie Retentionsbecken;

<u>An der Vulnerabilität</u> - Information der Bevölkerung; Installation von Frühwarnsystem; Erstellen von Notfallplänen; Aussiedelung aus dem Gefahrenbereich;

Für zwei problematische Gletscher in der Schweiz (Gruben- und Grindelwaldgletscher) wurden von Werder et al. (2010) und Haeberli et al. (2001) wirkungsvolle Maßnahmen untersucht. Gefahrenminimierungspläne können stark variieren, da speziell auf das Verhalten des Gletschers und Eigenschaften des restlichen Einzugsgebiets eingegangen werden muss. Ein wichtiger Punkt den umfassende Pläne meist enthalten ist eine weiterführende Beobachtung der Entwicklungen.

2.4.5 Monitoring

Um nach einer einmalig gesetzten Vorkehrung langfristig die geschaffene Sicherheit zu gewährleisten, ist eine ständige Überwachung erforderlich. Negativ wirkende Veränderungen im Einzugsgebiet müssen wahrgenommen werden um rechtzeitig darauf zu reagieren. Genauso können erforderliche Instandhaltungsarbeiten an Sicherungsbauten erkannt werden. Diese Sicherheit wird außerdem gefördert, wenn in den Köpfen möglicher Betroffener ein Bewusstsein für potentielle Gefahren verankert wird, da im Ereignisfall überlegter gehandelt werden kann.

Als Ergebnis des Monitoringprogramms, aber auch aus Teilen vorangegangener Schritte, können wertvolle Informationen für weitere Risikomanagementpläne auch für andere Regionen gewonnen werden. Dadurch werden Produkte des Monitorings wieder Teil der Gefahrenanalyse und somit kann der gesamte Prozess als Zyklus gesehen werden.

3 Untersuchungsgebiet

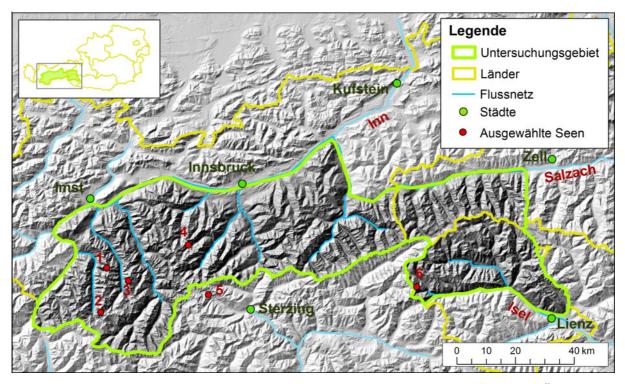


Abbildung 3.1 Darstellung des Untersuchungsgebietes; Ausgewählte Seen: (1)Schweikertsee, (2)Ölgrubensee, (3)Weißmaurachsee, (4)Berglassee, (5)Vogelhüttensee, (6)Fleischbachsee.

In die Untersuchung mit einbezogen werden Teile des österreichischen Hochgebirges in (Nord-)Tirol, Osttirol und einen Bereich Salzburgs. Dies umfasst die Gebirgsgruppen Ötztaler Alpen, Stubaier Alpen, Tuxer Alpen, Zillertaler Alpen, Venediger Gruppe, Granatspitzgruppe und Teile von Glockner Gruppe und Schober Gruppe.

3.1 Geologie und Morphologie

Tirol liegt in den Ostalpen und umfasst eine Fläche von 12.648 km², die im Bereich zwischen 500 m und 3.800 m ü.A. liegen. Das eingegrenzte Untersuchungsgebiet (grün umfasst in Abbildung 3.1) deckt 6.138 km² ab. Für die Inventarisierung der Hochgebirgsseen wurden lediglich die Flächen oberhalb von 2.000 m ü.A. berücksichtigt, womit 3.378 km² verbleiben. Die höchsten Gipfel in Tirol stellen gleichzeitig die höchsten in Österreich dar und sind Großglockner (3798 m ü.A.), Wildspitze (3768 m ü.A.), Weißkugel (3738 m ü.A.), Glocknerwand (3721 m ü.A.) und Großvenediger (3662 m ü.A.). Die Landesgrenze zwischen Nordtirol (Österreich) und Südtirol (Italien) wurde entlang der Wasserscheide gelegt, somit entwässert der österreichische Teil über die Donau ins Schwarze Meer und der italienische über die Etsch ins Mittelmeer. Die wichtigsten Flüsse sind Ötztaler Ache, Sill, Ziller und der Hauptfluss Inn in Nordtirol und Isel mit Drau in Osttirol.

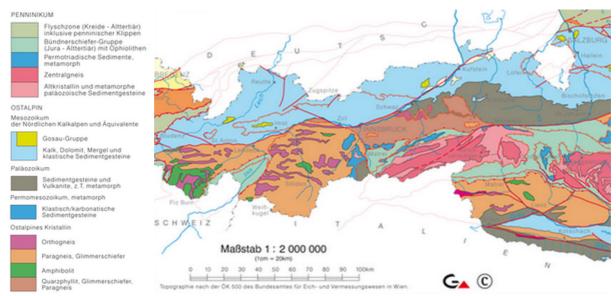
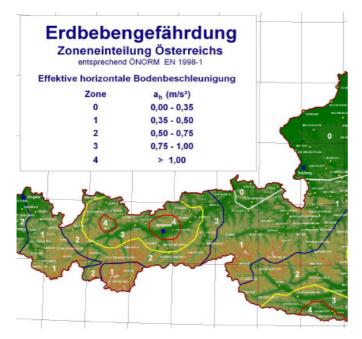



Abbildung 3.2 Geologie Tirol (Bild: Geologische Bundesanstalt). Vorwiegend kommen Gesteine des Ostalpins und des Penninikums, folglich Gneise und Schiefer zum Vorschein.

In Österreich findet man eine Vielzahl an geologischen Einheiten, die in Tirol am stärksten vertretenen sind das jüngere Ostalpin und das Penninikum. Wieso man diese zwei Einheiten in ihrer momentanen Konstellation findet, begründet sich aus der Entstehungsgeschichte der Alpen und der anschließenden Erosion. Im begrenzten Untersuchungsgebiet ist im Wesentlichen mit Gesteinen des kristallinen Ostalpins (Orthogneis, Paragneis, Glimmerschiefer, Amphibolit und Quarzphyllit) und penninischen Metamorphiten (Bündnerschiefer, metamorphe Sedimente/Sedimentgesteine und Zentralgneis) zu rechnen (Prey, 1980).

In Bezug auf seismische Aktivitäten ist im Untersuchungsgebiet von einer geringen Gefährdung auszugehen. Gemäß der Bebenkarte liegt es in den Zonen 1 und 2 mit einer maximalen horizontalen Bodenbeschleunigung von 0,75 m/s². Erdbeben sind von der Inntalstörung ausgehend möglich, deren Herde meist in einer Tiefe von 7-8 km unter der Erdoberfläche liegen (ZAMG, Erdbebengefährdung).

Vulkanisch bedingte Gefahren können hier ausgeschlossen werden.

Abbildung 3.3 Darstellung der Erdbeben Gefährdung in Tirol. Im Vergleich zu zentralasiatischen Ländern weist Tirol eine geringe Erdbebengefahr auf (Bild: Zentralanstalt für Meteorologie und Geodynamik, 2010).

3.2 Klima und Gletscher

Tirol zählt zur gemäßigten Klimazone, ist jedoch von atlantischen, kontinentalen und mediterranen Einflüssen geprägt. Damit ergibt sich neben niederschlagsreichem Sommer und trockenem Herbst auch hoher Winterniederschlag in Form von Schnee (Land Tirol). Dabei ist zu berücksichtigen, dass allein durch die Morphologie bedingt, extrem kleinräumig stark variierende Wettersituationen auftreten. Dies hat zur Folge, dass ebenfalls die jährlichen Niederschlagsmittel lokal sehr unterschiedlich ausfallen. Sie bewegen sich größtenteils im Bereich von 700 mm und 2000 mm, wobei Täler tendenziell die trockeneren Regionen darstellen (Geographie Innsbruck - Tirol Atlas).

Bei Niederschlagsmengen über 2000 mm erwartet man, dass Gletscher ausreichend Frischschnee bekommen um Ablation und Akkumulation im Gleichgewicht zu halten. Dies ist allerdings nicht der Fall. Der Vergleich der Gletscherinventare aus 1969 und 1998 zeigt mit wenigen Ausnahmen einen Rückgang der Gletscherfläche, bei einzelnen bis zu 50% (Geographie Innsbruck - Tirol Atlas). Für gesamt Nord- und Osttirol wurde ein Abschmelzen der Gletscherfläche von 393 km² auf 325 km² verzeichnet. Zusätzlich wurde in der vergangenen Dekade ein beschleunigter Rückgang wahrgenommen (Abermann et al., 2013). Aus den Ausführungen von Fischer und Hartl (2013) geht hervor, dass der Temperaturanstieg während der Ablationsphase (Mai bis September) ein Schlüsselfaktor zur Erklärung dieser Entwicklungen ist. Im Gegensatz dazu ist über die Akkumulationsphase (Oktober bis April) keine signifikante Tendenz der Temperaturänderung zu erkennen und hat somit geringeren Einfluss auf die Gletschermassenverringerung.

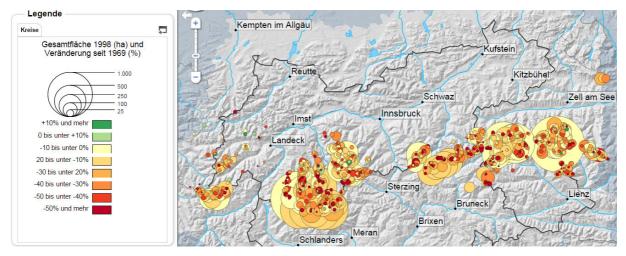


Abbildung 3.4 Darstellung der Gletscherentwicklung von 1969 bis 1998 (Geographie Innsbruck - Tirol Atlas). Fast ausnahmslos hat sich die Fläche der einzelnen österreichischen Gletscher verringert. Kleinere Gletscher haben relativ gesehen einen stärkeren Flächenverlust als größere Gletscher.

Spannend ist im Vergleich zur rezenten Entwicklung die Änderung der Gletscherfläche seit dem Ende der Kleinen Eiszeit. Gletscher nahmen damals die doppelte Fläche von heute ein (Fischer und Hartl, 2013). Die eisfreigewordenen Gebiete sind im Wandel, Vegetation setzt sich durch, die hydrologischen Verhältnisse begünstigen die Bildung von Seen und auch Menschen erweitern ihren Lebensraum.

3.3 Besiedlung und Vulnerabilität

Folgende Datenübersicht konzentriert sich auf das gesamte Bundesland Tirol, da Bevölkerungsdaten je Land besser auszuwerten sind. Jedoch ist anzunehmen, dass sich im kleinen Salzburger Anteil ähnliche Bevölkerungsdichten finden wie in Tirol.

Die ersten Siedlungsbildungen in Alpentälern wurden durch Pollenanalyse um 4500 v.Chr. ermittelt. Diese Besiedlungsperiode deckt sich mit einer klimatischen Gunstzeit (holozänes Wärmeoptimum 7000 - 3500 v.Chr.). Auch anschließende Entwicklungen bis zum Beginn der Bronzezeit zeigen eine Übereinstimmung mit Klimaschwankungen. Danach, ist anzunehmen, dass die fortgeschrittenen Subsistenzsysteme diese Korrelation aufheben (Oeggl, 2011). Heute ist Tirol erstaunlich dicht besiedelt. 722.038 Einwohner auf 12.648 km² ergeben zwar lediglich eine Bevölkerungsdichte von 57 EW/km². Wenn man berücksichtigt, dass Tirol einen minimalen Prozentsatz Dauersiedlungsraum von 12% der Landesfläche aufweist, steigert sich die Siedlungsdichte auf etwa 450 EW/km² Dauersiedlungsraum. Mit dem stetigen Bevölkerungswachstum, schwankend zwischen 5-8% über 10 Jahre (1981-1991: 7,63%; 1991-2001: 7,61%; 2001-2011: 5,65%) ist ein gewisser Flächendruck gegeben (Statistik Austria und Michael et al., 2013). Dies geht auch aus Programmen der Tiroler Landesregierung hervor, wobei die Flächenknappheit neben dem begrenzten Dauersiedlungsraum auch mit der Präsenz von Naturgefahren begründet wird. Die Hauptproblematik ergibt sich aus den teils engen Tälern. Versucht man von den Bergflanken abzurücken um Lawinen, Felsstürzen und Muren auszuweichen, kommt man den Flüssen nah von denen wiederum Hochwassergefahr ausgeht. Vom momentanen Dauersiedlungsraum wurden 12,7% als Gefahrenzone ausgewiesen, womit die Notwendigkeit gegeben ist, aktiv an der Sicherung des Lebens- und Wirtschaftsraums zu arbeiten (Amt der Tiroler Landesregierung, 2010).

Maßnahmen zum Schutz vor Hochwässern werden in Österreich nach den EU-Hochwasserrichtlinien bearbeitet, welche im nationalen Wasserrechtsgesetz verankert sind. Alle weiteren Naturgefahren sind nicht so einheitlich geregelt. Es kommen zusätzlich das Wildbachverbauungsgesetz, Forstgesetz, Raumplanungsgesetz und die Gefahrenzonenplanverordnung zur Anwendung. In Folge einer systematischen Begutachtung von Gletschergefahren könnten diese bei Bedarf ebenfalls gesetzlich festgehalten werden. Aus der Zusammenstellung historischer Ereignisse und aktueller Gletscherrisiken im Rahmen des GlacioRisk-Projekts geht hervor, dass einzig der Blockkarkees (Salzburg) durch seine regelmäßigen Eislawinen als gefährlich einzustufen ist (GlacioRisk, 2003). Fraglich ist, ob rein durch die Überprüfung vergangener Gefahrenzonen, ohne ganzflächige Betrachtung des veränderten Gletscherraums, eine verlässliche Aussage zu machen ist.

3.4 Historische Ereignisse

Man kann aus früheren Geschehnissen einiges lernen, wie bereits im Kapitel des Risikomanagements angesprochen wurde. Nachstehend wird die Sammlung über österreichische Gletschergefahrenereignisse aus dem Projekt GlacioRisk behandelt.

Jahr	Land	Name	Art	Beschreibung
7 1600 1680 1770 1845	Tir	Vernagtferner	Gletscherflut	Die zyklisch aufgetretenen Vorstöße des Vernagtferners reichten bis zum Talboden und stauten dadurch den Rofen-Bach. Wiederholt kam es zum Ausbruch des Eisstausees mit weitreichenden Verwüstungen im Ötztal, jeweils unterschiedlicher Intensität.
1770	Tir	Sulzenauferner	Gletscherflut	Eismassen brachen in den moränen- gedämmten See "Blaue Lacke" und brachten ihn zum Ausbruch. Die Flutwelle ging über Sulzbach und Ruzbach ins Tal. Das Schadensausmaß ist nicht bekannt.
1784 1799	Ktn	Pasterze	Gletscherflut	Ein von der Gletscherzunge gedämmter See brach zweimal aus.
1833	Ktn	Pasterze	Eislawine	Gletschereistürme brachen über den Elisabethfelsen herab und bedrohten landwirtschaftliche Gebäude.
1890	Tir	Gallruttferner	Gletscherflut	Ein moränengedämmter See brach aus, jedoch gibt es keine exakten Überlieferungen über die Schäden im Tal.
1899	Sbg	Keestrachter	Eislawine	Eine Eislawine löste sich vom Gletscher und beschädigte Weideland. Vermutlich war die hohe Last durch extreme Schneefälle in den Wochen zuvor die Ursache.
1932	Tir	Marzellferner/ Schalfferner	Gletscherflut	Die Sanderfläche zwischen den Gletscherzungen wuchs immer mehr an. Im darunter liegenden Moränenmaterial war Toteis verborgen. Das Schmelzwasser bahnte sich einen 10 m tiefen Tunnel und brach durch den Seeboden. Es sind keine Folgen überliefert.

1932	Ktn	Hochalmkees	Gletscherflut	Ein Teil des Gletschers brach über einer Felsnase ab und stürzte in den Preimlsee, welcher etwa 300.000 m³ Wasser entleerte. An die 16.000 Tonnen Schuttmaterial wurden dabei im Tal abgelagert. Neben der Verwüstung von Weideflächen und Wanderwegen, kamen drei Menschen ums Leben.
1937	Ktn	Großelendkees	Eis- und Schnee- Lawine	Eine relativ kleine Eislawine löste eine gewaltige Schneelawine aus, welche sich 5 km weit ausbreitete und das Tal bis zu 30 m mit Schnee bedeckte. Betroffen waren Almen, landwirtschaftliche Gebäude und Nutzflächen.
1982	Tir	Flirscher Ferner	Eislawine	500.000 m³ Eis sprangen über eine Felsnase, wo kleinere Lawinen üblicherweise zu liegen kamen. Waldflächen und eine Straßenbaustelle wurden in Mitleidenschaft gezogen.
2001	Sbg	Sonnblickkees	Eislawine	Eine Eislawine mit 15.000 m³ brach über einen Felsen auf die Gletscherfläche ab. Diese wurde vom frischen Firn abgebremst und kam noch am Gletscher zum Stillstand. Wäre das nicht der Fall gewesen, wäre sie in einen See im Gletschervorfeld gestürzt und es hätte schlimmere Folgen gehabt, als ein schönes Klettergebiet zu verlieren.
1933 - 2003	Sbg	Blockkarkees	Eislawinen	Seit 1933 wurden etwa 70 Ereignisse dokumentiert, wobei 6 davon größere Ausmaße annahmen (0,5-5 Millionen m³). Schäden gab es nur auf Forst- und landwirtschaftlich genutzten Flächen. Durch Beobachtungen ist es jetzt möglich, relativ exakt den Tag der Lawine vorauszusagen um das Gebiet für Besucher zu sperren.

Tabelle 3.1 Zusammenstellung der historischen Gletschergefahren in Österreich (nach: GlacioRisk, 2003). Die verwendeten Abkürzungen stehen für die jeweiligen Bundesländer Ktn-Kärnten, Sbg-Salzburg und Tir-Tirol.

	Untersuchungsgebie
--	--------------------

Wenn man den heutigen Zustand dieser Gebiete betrachtet, ist größtenteils nichts mehr von den Geschehnissen und teilweise auch kaum ein Gletscher zu erkennen. Der Alpenraum hat sich stark gewandelt. Um jetzt drohende Gletschergefahren aufzufinden, ist es notwendig einen vollflächigen Blick auf das Interessensgebiet zu werfen. Mit welchen Hilfsmitteln und welcher Vorgehensweise dies für die vorliegende Arbeit umgesetzt wurde, ist im folgenden Kapitel dargestellt.

4 Materialien und Methoden

Zum kompakten und übersichtlichen Abhandeln der verwendeten Datengrundlagen und deren Weiterverarbeitung werden die Materialien und Methoden gemeinsam für jeden Teilarbeitsbereich spezifisch erläutert. Wie in der Einleitung angeführt setzt sich diese Untersuchung aus den Einheiten der Inventarisierung von Hochgebirgsseen, der Analyse der Seeentwicklung und der Abschätzung des Gefahrenpotentials zusammen. Obwohl hauptsächlich mit Fernerkundungsdaten gearbeitet wurde, variieren die Materialien von Luftbildern über Satellitenbilder bis hin zu Geländemodellen. Von einigen Seen fließen ebenfalls Informationen aus Geländeaufnahmen mit ein. Um Erkenntnisse aus den Rohdaten zu gewinnen, wurden teils manuelle und augenscheinliche Beurteilungen, statistische Auswertungen und ein automatisiertes Programm mit einem Modell zur Gefahrenabschätzung angewendet. Angepasst an die gesuchten Informationen wurde das untersuchte Gebiet eingegrenzt oder es wurden spezielle Seen für die Studie ausgewählt.

4.1 Inventarisierung von Hochgebirgsseen

Im Tiroler Raum ist eine Vielzahl an stehenden Gewässern zu finden, deren Ursprünge mannigfaltig sind. Von entkoppelten ehemaligen Flussschlingen über reliefbedingte Staulagen, Regenwasser gespeisten Teichen zu künstlich angelegten Speichern und schlussendlich Gletscherseen ist alles vorhanden. Die glazial geformten Seen ist jene relevante Art, nach der hier gesucht und welche untersucht wurde. Um einen großen Teil der andern Seetypen auszuschließen, wurde das Untersuchungsgebiet auf eine Höhe von über 2000 m ü.A. eingeengt und Seen mit einer Fläche < 250 m² vernachlässigt. Das Seeninventar wurde auf Basis von Google Earth Bildern erstellt, wobei in erster Linie Größe und Lage der Gewässer kartiert wurden. Informationen, wie Dammmaterial, Gletscherbezug und Oberflächenabfluss wurden in einer Datenbank über die Geoinformations-Software ArcGIS vernetzt. Die abschließende statistische Auswertung erfolgte mit dem Tabellenkalkulations-Programm Excel.

4.1.1 Datengrundlage

Die momentan veröffentlichten Google-Earth-Bilder (Dezember 2014) wurden als Datengrundlage für die Analyse herangezogen. Diese Satelliten- und Luftbilder sind auf ein digitales Geländemodell projiziert um dreidimensional dargestellt werden zu können. Dafür kam die Pseudo Mercator Projektion auf dem WGS 84 Referenzsystem zur Anwendung (Google Earth). Üblicherweise werden Bilder der letzten ein bis drei Jahre veröffentlicht, unvorteilhafter Weise bewegen sich die Aufnahmezeitpunkte im Untersuchungsgebiet zwischen den Jahren 2000 und 2007. Mit bis zu fünfzehn Jahren, gehören sie zu den älteren Aufnahmen. Dies wird in Kauf genommen, da es keine alternativen Programme, mit einer vergleichbaren Datenmenge, Handlichkeit und Auflösung zur freien Nutzung gibt. Die Pixelgröße ist nicht direkt auszulesen und variiert über das gesamte Gebiet, jedoch ist eine verlässliche Angabe über Vergleichsobjekte möglich. Zum Beispiel sind Autos gut erkennbar, einzelne Personen dagegen nicht, folglich liegt die Auflösung um einen Richtwert von mehreren Dezimetern bis zu einem Meter, aber nicht gröber. Dementsprechend ist die

Wiedererkennung von Objekten (Seen) und Strukturen (Fels) äußerst zufriedenstellend. Die Lagegenauigkeit kann durch den Vergleich von Doppelaufnahmen abgeschätzt werden. In einigen Regionen sind Bilder aus verschiedenen Jahren mit identem Ausschnitt abgespeichert. Dies ermöglicht die relative Lagegenauigkeit eines Fixpunktes in den verschiedenen Aufnahmen auszumessen. Bei stichartigen Probebestimmungen kamen Differenzen bis zu 30 m zum Vorschein, das ist eine Ungenauigkeit welche keine Relevanz für die Analyse hat.

Abbildung 4.1 Übereinstimmender Bildausschnitt verschiedener Aufnahmejahre aus Google Earth, zur Abschätzung der relativen Lagegenauigkeit. Die Lage der Reichenbergerhütte deckt sich in den verschiedenen Aufnahmen nicht exakt (Bilder: Google Earth; Aufnahmejahr links: 2000 rechts: 2003).

Die kartierten Seepolygone wurden in das Programm ArcGis übertragen, wobei die Lagekoordinaten erhalten blieben, die Höhenlage jedoch aus dem SRTM-Geländemodell ermittelt wurde. Dieses DGM wurde im Februar 2000 für die gesamte Erde zwischen 60° Nord und 60° Süd aufgezeichnet und ist mit einer Auflösung von 90 m frei verfügbar (in Nordamerika 30 m Auflösung).

4.1.2 Datenverarbeitung

Eine weitere zu behandelnde Unsicherheit hat bedingt mit der Auflösung der Aufnahmen zu tun. Um eine sichere Aussage über Dammmaterial oder Abflussverhältnisse zu tätigen wäre es notwendig jeden einzelnen See vor Ort zu beurteilen. Fernerkundungsmethoden haben den Vorteil, eine Zeitersparnis mit sich zu bringen, jedoch auch den Nachteil, dass gewisse Informationen verloren gehen und Inhalte begrenzt extrahiert werden können. Um der Problematik adäquat zu begegnen wurde eine Klassifizierung mittels Punktevergabe entwickelt, welche diese Unsicherheiten festhält. Bevor das Klassifizierungssystem erläutert wird, zeigt Tabelle 4.1 eine Übersicht über die gesammelten Attribute mit deren Bestimmungskriterien und Beschreibungen.

Eigenschaft	Wert	Kurzbeschreibung
Seetyp	in Summe 10	Die Seen werden nach der Art des Dammmaterials beschrieben. Hier wird unterschieden zwischen festem Fels, Moränenmaterial, Gletschereis, Massenbewegungsmaterial und anthropogen gedämmten Seen. Ein See kann Punkte für verschiedene Dammmaterialien bekommen die in Summe 10 ergeben.
Gletschernähe	1/0	Wenn der See in einem sichtlich rezent glazial geprägten Gebiet liegt, wird er als gletschernah (1) kategorisiert.
Gletscherkontakt	0-10	Prinzipiell wurden nur 0 Punkte, für keinen direkten Gletscherkontakt und 10 Punkte für direkten Kontakt vergeben, d.h. wenn der Gletscher in den See kalbt. In manchen Fällen gab es auch 5 Punkte, wenn die stark reduzierten Eisflächen kaum mehr als Gletscher gesehen werden konnten.
Schmelzwasserzufluss	0 – 10	Bei eindeutiger Gletscherwasserversorgung des Sees wurden 10 Punkte vergeben. Abminderungen gab es bei unsicheren Zuflussweg oder nicht mehr als Gletscher benennbaren Eismassen.
Oberflächenabfluss	0-10	Ist eine mit Fernerkundung schwer verlässlich zu bestimmende Eigenschaft. In die Punktevergabe fließt die Erkennbarkeit mit ein.
Fläche	in m²	Die Seeoberfläche wird gemessen und dient weiter folgend zur Abschätzung des Volumens.
Höhenlage	m ü.A.	Die Lage der Seen wurde aus dem SRTM-Geländemodell auf Basis des WGS84-Referenzsystems extrahiert.
Aufnahmejahr	Jahr	Aufnahmejahr der momentan veröffentlichten Google Earth Satelliten- und Luftbilder.

Tabelle 4.1 Übersicht über die gesammelten Attribute jedes Sees im Seeninventar. Manche Eigenschaften werden durch Punktevergabe klassifiziert und herkömmliche Größen in Metern angegeben.

Auf die zwei Punkte Seetyp und Oberflächenabfluss wird genauer eingegangen und die Schwierigkeit der Klassifizierung mit Beispielen verdeutlicht. Die Abflussverhältnisse sind deshalb von Bedeutung, weil bei durchsickerten Dämmen schwer zu sagen ist, was die Strömung im Damminneren bewirkt. Eine andauernde Sickerströmung bringt einerseits eine zusätzliche ungünstige Belastung, andererseits können Feinteile ausgewaschen werden und zu einer Destabilisation führen. Satellitenund Luftbilder haben den Nachteil Momentaufnahmen darzustellen. Wenn auf der Aufnahme oberflächig kein Abfluss erkennbar ist, kann das bedeuten, dass Wasser tatsächlich durchsickert, oder aber, dass nur zum Zeitpunkt der Aufnahme kein Abfluss stattgefunden hat. Dies wurde kompensiert indem Erosionsrinnen je nach Deutlichkeit ebenfalls Punkte erhielten. Ein weiteres schwer zu erfassendes Phänomen ist der oberflächennahe Abfluss. Bei Geländeaufnahmen wurde diese typische Form bei Seen gefunden, welche generell felsgedämmt sind, aber das Wasser durch eine Lockermaterialauflage fließt.

Abbildung 4.2 Oberflächennaher Abfluss eines Sees durch eine Lockermaterialauflage auf dem Felsdamm. Meist ist diese Abflussart mittels Fernerkundungsaufnahmen schwer zu erkennen und nur bei Geländeaufnahmen vor Ort eindeutig definierbar.

Diese Materialienkonstellation bringt insbesondere bei der fernerkundlichen Bestimmung des Seetyps Unschlüssigkeit. Die Fels-Lockermaterial-Kombination ist die am häufigsten vertretene, aber auch die Eis-Lockermaterial-Kombination birgt Probleme. Toteis, oft in Moränen zu finden und Blockgletscher enthalten Eis als Bindemittel zwischen dem Gesteinsschutt. Auf Bildern ist das selten eindeutig herauszulesen, darum wurde die Punkteklassifizierung entwickelt. Somit kann jeder See Punkte für verschiedene Dammmaterialien erhalten die in Summe 10 ergeben. Aus den vergebenen Punkten ist eine Tendenz herauszulesen, um welchen Seetyp es sich mit großer Wahrscheinlichkeit handelt. Der Seetyp wird durch das signifikant überwiegende Dammmaterial festgelegt. Angesetzt wird der Grenzwert mit ≥6 Punkten für ein Dammmaterial. Die Stabilität dieser Klassifizierungsmethode wird unter den Ergebnissen kurz ausgeführt. Die folgenden Bilder zeigen Beispiele und geben auch den Lesern und Leserinnen ein Gefühl für die angewandte Typisierungstechnik.

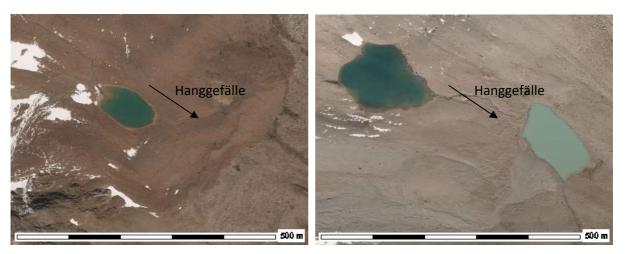


Abbildung 4.3 Beispiel für Seen welche von Moränenmaterial gedämmt sind (Bild: tirisMaps). Punktesystem - Fels: 0, Moränenmaterial: 10, Eis: 0, Massenbewegung: 0, Anthropogen: 0;

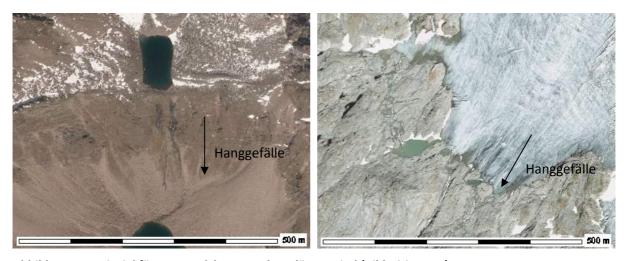


Abbildung 4.4 Beispiel für Seen welche von Fels gedämmt sind (Bild: tirisMaps). Punktesystem - Fels: 10, Moränenmaterial: 0, Eis: 0, Massenbewegung: 0, Anthropogen: 0;

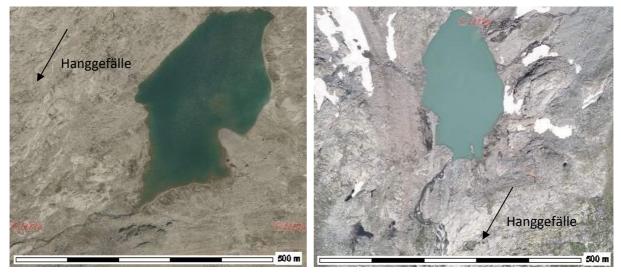


Abbildung 4.5 Seen die durch Fels mit Lockermaterialauflage gedämmt sind (Bild: tirisMaps). Punktesystem - Fels: 8, Moränenmaterial: 2, Eis: 0, Massenbewegung: 0, Anthropogen: 0;

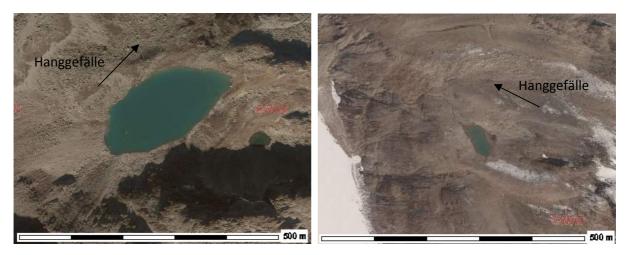


Abbildung 4.6 Beispiel für Seen mit einer nicht eindeutigen Fels-Lockermaterial-Kombination (Bild: tirisMaps) Punktesystem - Fels: 5, Moränenmaterial: 5, Eis: 0, Massenbewegung: 0, Anthropogen: 0;

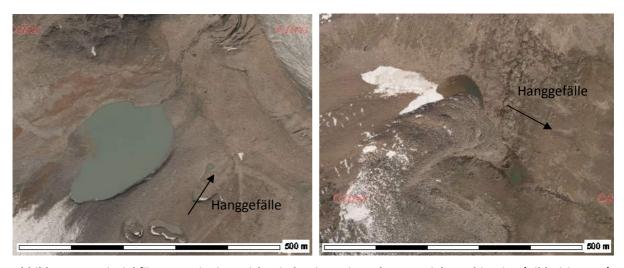


Abbildung 4.7 Beispiel für Seen mit einer nicht eindeutigen Eis-Lockermaterial-Kombination (Bild: tirisMaps) linkes Bild: Toteis Einschlüsse im Moränenmaterial; rechtes Bild: Blockgletscher von südlicher Talflanke Punktesystem - Fels: 2, Moränenmaterial: 5, Eis: 3, Massenbewegung: 0, Anthropogen: 0;

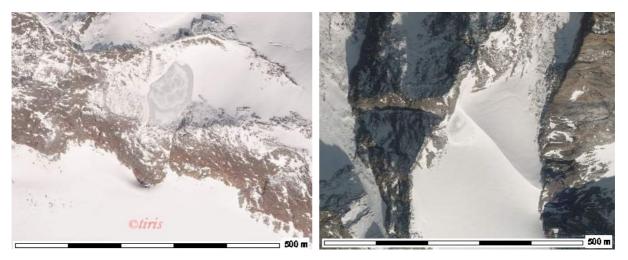


Abbildung 4.8 Beispiel für Seen welche größtenteils durch Eis gedämmt werden (Bild: tirisMaps). Punktesystem - Fels: 2, Moränenmaterial: 0, Eis: 8, Massenbewegung: 0, Anthropogen: 0;

Abbildung 4.9 Beispiel für Seen welche durch menschlichen Eingriff gedämmt wurden (Bild: tirisMaps). Punktesystem - Fels: 0, Moränenmaterial: 0, Eis: 0, Massenbewegung: 0, Anthropogen: 10;

Zusätzlich wurde die Kategorie der Gletschernähe eingeführt. Diese wird nicht quantitativ in einer Entfernung vom Gletscher ausgedrückt, sondern qualitativ visuell beurteilt, ob das Gelände noch vor wenigen hundert Jahren vergletschert war. Im Vergleich ist gletscherfernes Gebiet weniger von hydro- und morphologischen Veränderungen geprägt, und damit stabiler. Der Überbegriff "Moränenmaterial" wird in beiden Fällen verwendet, wobei gletscherferne Ablagerungen von Gletschern vor der Kleinen Eiszeit stammen. Nebenbei inkludiert der Begriff teilweise Sanderflächen und Blockgletschermaterial, weil wegen deren geringer Vertretung dafür keine eigenständige Kategorie vergeben wurde.

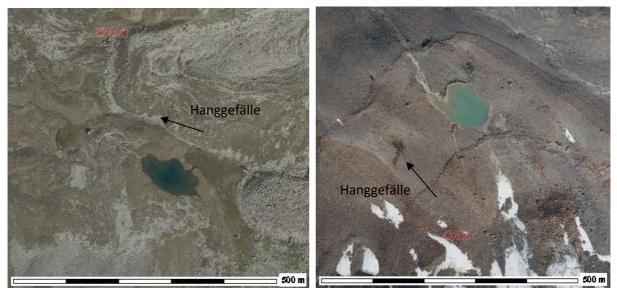


Abbildung 4.10 Seen welche durch Moränenmaterial gedämmt sind. Linkes Bild: Der See liegt sichtlich gletscherfern, dabei sind große Flächen bereits von Vegetation bedeckt. Rechtes Bild: Der See liegt innerhalb eines rezent von Gletscher geformten Gebietes. Neben Eisresten sind kleiner kürzlich geformte Moränenwälle zu sehen (Bilder: tirisMaps).

Als letzter Punkt wird betrachtet welche Seen in potentiell von Permafrost betroffenen Gebieten zu liegen kommen. Dafür wird ein Modell zur Berechnung der möglichen momentanen und zukünftigen Permafrostverteilung herangezogen, welches von Haeberli (1975) entwickelt und von Ebohon (2007) für Österreich angepasst wurde. Die bereits vorhandenen Permafrostkarten von Mergili et al. (2012b) wurden mit der Lageinformation der kartierten Seen überlagert, um im Permafrost gelegene Seen zu identifizieren. Dabei kann einerseits zwischen sporadischem und diskontinuierlichem Permafrost unterschieden werden, andererseits ist es möglich Zukunftsszenarien mit einem Temperaturanstieg zu simulieren. Eine gewisse Unschärfe des Ergebnisses kann sich daraus ergeben, wenn sich seit der Modellberechnung die klimatischen Bedingungen etwas geändert haben.

4.2 Analyse der Entwicklung ausgewählter Gletscherseen

Bis jetzt wurde in den Ausführungen dahingestellt, dass ein Gletscherrückzug das Entstehen von neuen Seen mit sich führt. Mit Beispielen wird nachvollziehbar, wie diese Entwicklungen von sich gehen. Zur Analyse ist ein Luftbild genauso wenig aussagekräftig wie eine einmalige Begehung, man braucht mehrere Aufnahmen über eine gewisse Zeit hinweg.

4.2.1 Datengrundlage

Aus den historischen Bildarchiven der Länder Tirol, Südtirol und des Bundesamtes für Eich- und Vermessungswesen (BEV) wurden Zeitserien bis 1954 zurück analysiert. Fünf Seen bzw. Seegruppen wurden ausgewählt, um verschiedene Entstehungsszenarien aufzuzeigen und Gemeinsamkeiten oder auch Eigenheiten zu erkennen. Eine Eigenschaft vereint alle, sie standen zu Beginn ihrer Bildung im direkten Kontakt mit dem Gletscher. Die Bildfolge wurde vor dem erstmaligen Auftreten des Sees begonnen und alle chronologisch folgenden Bilder zum Vergleich herangezogen. Auf Grund der unterschiedlichen Aufnahmezeitpunkte und Aufnahmegründe, variieren die Qualität, Farbkanäle und Ausschnitte der Bilder. Die Tabelle 4.2 zeigt eine Zusammenstellung der verwendeten Bilder mit deren Quellen.

Bei den Aufnahmen handelt es sich bis ca. 1990 um Schwarz-Weiß-Bilder, danach um Echtfarbenbilder und einige wenige Falschfarbenbilder. Die Qualität variiert, ist aber durchwegs ausreichend um nötige Details zu erkennen. Zur Georeferenzierung wurde zum Teil das frei verfügbare digitale Geländemodell des Landes Tirol herangezogen, welches eine Auflösung von 10 m aufweist.

See/Seegruppe	Region	Jahre	Quelle und Art	
1 Schweikertsee	Ötztaleralpen /	1954, 1969, 1971,	Land Tirol und BEV,	
	Kaunertal	1982, 1991, 1994,	Luftbilder und ein	
		2003, 2009;	Orthofoto	
2 Ölgrubensee	Ötztaleralpen /	1970, 1996, 2003,	Land Tirol und BEV,	
	Kaunertal	2009;	Luftbilder	
4 Berglassee	Stubaieralpen /	1969, 1973, 1994,	Land Tirol und BEV,	
	Oberbertal	2003, 2010;	Luftbilder	
5 Vogelhüttenkomplex	Stubaieralpen /	1945, 1954, 1985,	Land Südtirol,	
	Ridnauntal	1997, 1999, 2006,	Orthofotos	
		2011;		
6 Fleischbachsee	Venedigergruppe /	1969, 1974, 1982,	Land Tirol und BEV,	
	Defereggental	1992, 1999, 2002,	Luftbilder und ein	
		2012;	Orthofoto	

Tabelle 4.2 Übersicht über die verwendeten Luftbilder und Orthofotos. Nach den angegebenen Nummern ist die Lage der Seen im Untersuchungsgebiet aus der Abbildung 3.1 herauszulesen.

4.2.2 Datenverarbeitung

Ein einziger Zwischenschritt, die Georeferenzierung aller Bilder, war notwendig um den direkten Größenvergleich im Laufe der Zeit zu ermöglichen. Die geometrische Transformation wurde mittels ArcGIS verarbeitet und berechnet. Für Untersuchungsflächen, wo Orthofotos bereitgestellt wurden, konnten diese als Referenz herangezogen werden. Die verbleibenden Gebiete wurden über das digitale Geländemodell des Landes Tirol georeferenziert.

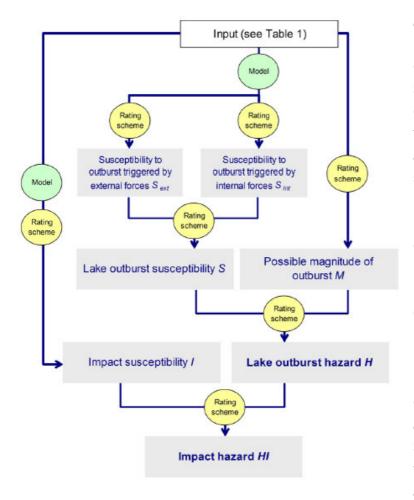
4.3 Beurteilung des Gefahrenpotentials

Die abschließende Arbeitsphase befasst sich mit der Identifikation von potentiell ausbruchgefährdeten Seen. Mit Hilfe der GIS-basierten Modellberechnung, r.glof genannt, nach Mergili und Schneider (2011) wurde das gesamte Untersuchungsgebiet analysiert. Eine ausführliche Erklärung für das Programm findet man in dem genannten Paper. In der vorliegenden Arbeit wird der Hintergrund erläutert und auf Unterschiede eingegangen, die sich aus den ungleichen Forschungsgebieten ergeben. Neben der Ausbruchsgefahr jedes Sees wurde die betroffene Auslauffläche abgeschätzt. Es ist zu betonen, dass es sich dabei um eine vorläufige grobe Näherung handelt, die generellen Überblick liefert. Die Modellergebnisse sollten keinesfalls auf der Ebene der einzelnen Rasterzellen interpretiert werden. Genaue Ergebnisse werden für relevante Seen dargestellt und diskutiert.

4.3.1 Datengrundlagen

Das Programm, r.glof benützt als Rechengrundlage ein digitales Geländemodell, wofür die frei erhältlichen DGM der Länder Tirol und Salzburg mit einer 10 m Auflösung herangezogen wurden. Weitere Eingangsdaten wurden aus dem Seeninventar extrahiert, dazu zählen Gletscherkontakt, Dammmaterial, Abflussverhältnisse und Oberfläche. Die Größe des Gewässers findet über das Volumen Eingang in die Berechnung. Mit einem empirischen Zusammenhang des Volumens (V) mit der Oberfläche (A), empfohlen von Huggel et al. (2002) und O'Connor et al. (2001), wurde das Volumen ermittelt.

$$V = 1,04 \times 10^{-1} \times A^{1,42}$$
 (1)


Auch die Parameter zur Beschreibung des Abflussverhaltens einer Flut, basieren auf empirischen Erkenntnissen. Sie werden benötigt um die mögliche Reichweite einer Flutwelle abzuschätzen. Dafür wurden Daten verschiedenster Autoren kombiniert, wie aus Mergili und Schneider (2011) zu lesen ist. Um die Eingangsdaten mit ihrer Herkunft und dem Einfluss im Programm zu verstehen, werden die extrahierten Informationen in Tabelle 4.3 zusammengestellt und anschließend das Modellprinzip dargelegt.

Input	Einfluss in Programm	Quelle
DGM	Ableitung von geometrischen Daten	Länder Tirol und Salzburg
Seeninventar	Entnahme von Seeeigenschaften	Eigenkartierung
Versagensanfälligkeit des Einzugsgebietes	Externe Gefahren	DGM - Extraktion
Freibord des Dammes	Externe Gefahren	DGM - Extraktion
Kalben des Gletschers	Externe Gefahren	Seeinventar
Seismische Aktivität	Externe Gefahren	ZAMG/unbedeutend
Dammtyp	Interne Gefahren	Seeinventar
Abflussverhältnisse	Interne Gefahren	Seeinventar
Seewachstum	Interne Gefahren	Seenentwicklung
Dammneigung	Interne Gefahren	DGM - Extraktion
Seevolumen	mögliche Magnitude	Inventar + Formel (1)

Tabelle 4.3 Eingangsdaten für die Gefahrenpotentialberechnung mit r.glof (vgl.: Mergili und Schneider, 2011). Einflussgrößen werden hauptsächlich aus dem digitalen Geländemodell und dem Seeninventar extrahiert.

Obwohl die Geologie und Felseigenschaften in der Realität die auslösenden Mechanismen im Einzugsgebiet beeinflussen, können diese auf Grund der großflächigen Betrachtung nicht berücksichtigt werden. Genauso ist der empirische Ansatz zum Ermitteln des Seevolumens nicht bei jedem See treffend. Das Seewachstum konnte lediglich bei jenen Seen direkt berücksichtigt werden, deren Entwicklung in Abschnitt 5.2 analysiert wurde. Über die Information des Gletscherkalbens, kann das Wachstumspotential in die Berechnung einfließen. Vereinfachungen sind notwendig, wenn mit Modellen gearbeitet wird, jedoch müssen diese bei der Analyse und Deutung der Resultate bedacht werden.

4.3.2 Datenverarbeitung mit dem GIS-basierten Programm r.glof

Am dargestellten Diagramm ist der Prozess, hinter der Berechnung des Gefahrenpotentials, deutlich zu erfassen. Die Informationen aus den genannten Rohdaten werden folgendermaßen veredelt: Ausbruchsensibilität (S) eines stehenden Gewässers wird bestimmt durch die seeeigenen, internen Eigenschaften (S_{int}) und externen Gefahren (S_{ext}), also Einflüssen aus dem Einzugsgebiet. Kombiniert diese Anfälligkeit des Versagens mit der möglichen Magnitude des Ereignisses erhält man die Gefahr (H) die durch einen Seeausbruch kann. Um entstehen Auswirkungen dieser Gefahr (HI) erkennen, muss geprüft werden, welche räumliche Ausdehnung (I) eine Flut mit der ermittelten Magnitude erreicht.

Abbildung 4.11 Hintergrund des Programmes r.glof, zur Berechnung des Gefahrenpotentials eines Seeausbruches. Seeausbruch-Suszeptibilität und Magnitude bestimmen die Seeausbruchgefahr. Unter Berücksichtigung der Abfluss-Suszeptibilität erhält man die Gefahr der Auswirkungen (Bild: Mergili und Schneider, 2011).

B 4 - 1 -			B 4 -	
IV/IATE	าลแคท	า มากต	IV/IP:	thoden

Die Ergebnisse werden durch eine Klassifizierung verdeutlicht. Jede Einflussgröße wird in das siebenstufige System eingeordnet (vernachlässigbar, gering, moderat, mittel, hoch, sehr hoch und extrem hoch). Das macht es möglich, die endgültige Gefahrenstufe der Auswirkungen genau zu begründen und zu erkennen ob eher externe oder interne Faktoren ein mögliches Versagen begründen. Den wahrscheinlichen Ausbreitungsflächen der Flutwellen oder Muren werden ebenfalls Gefahrenstufen zugeordnet und können GIS-basiert grafisch dargestellt werden.

Da die Modellierung lediglich eine grobe Näherung ist und die ablaufenden Prozesse empirischstatistisch berechnet werden, können die Ausbreitungsflächen nicht scharf abgegrenzt werden. Es wird bereits an der Optimierung des Auslaufmodells gearbeitet. Trotzdem können auch die Ergebnisse der verbesserten Version nicht für Detailfragestellungen (z.B.: Bemessung von Schutzmaßnahmen) herangezogen werden, da Eingangsdaten und Prozessmodellierung zu grob sind.

5 Ergebnisse und Diskussion

Die vorliegende Arbeit zeigt die Zusammenhänge der alpinen Kryo- und Hydrosphäre im Forschungsgebiet Tirol und mögliche Gefahren, die aus diesem Zusammenspiel hervorgehen. Detailergebnisse der Untersuchung werden wiederum in den drei Teilarbeitsbereichen abgehandelt. Eine umfassende Illustration des Ist-Zustandes bietet das Inventar von Hochgebirgsseen. Wie es zu der Bildung von Gletscherseen kommt und welche charakteristischen Formen in Tirol üblich sind, zeigt die Entwicklungsanalyse. Zuletzt wird dargelegt, welche Gefahren ausgehend von Gletscherseeausbrüchen durch die großflächige Modellberechnung identifiziert werden konnten.

5.1 Inventarisierung von Hochgebirgsseen

Im Untersuchungsgebiet wurden 1045 Seen gefunden, kartiert und deren Eigenschaften in einer Datenbank gesammelt. Etwa die Hälfte der Seen (51%, 534) wird durch Moränenmaterial eingedämmt, die andere Hälfte sind hauptsächlich felsgedämmte Seen (46%, 481). Die Dammmaterialien der überschaubaren letzten 3% verteilen sich auf 8 Seen mit Eisdamm, lediglich einen durch Massenbewegung und 21 anthropogen gestauten Seen. Der größte Anteil (67%, 686) der Seen befindet sich nicht in unmittelbarer Nähe zu bestehenden Gletschern, die verbleibenden Seen (33%, 338) liegen in offensichtlich vor kurzem von Gletschern geprägtem Gelände. Die Diagramme 5.1 und 5.2 visualisieren das Gesamtergebnis des Inventars, danach wird auf See- und Gebietscharakteristika eingegangen, welche sich aus der erstellten Datenbank ableiten lassen.

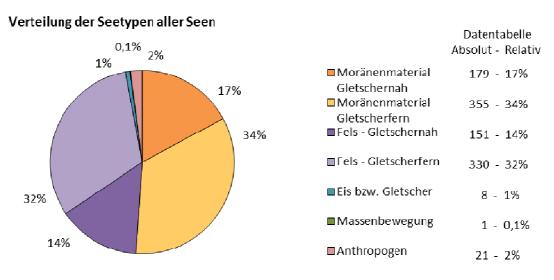


Diagramm 5.1 Verteilung aller Seen nach Seetypen, mit Unterscheidung der Gletschernähe. Hauptsächlich sind moränen- und felsgedämmte Seen vertreten. Nur ein Drittel der Seen wird als gletschernah klassifiziert.

Um die Stabilität der Seetyp-Klassifizierung mittels Punktesystem darzulegen, ist in der Tabelle 3.1 die Einteilung nach verschiedenen Kriterien oder Grenzwerten zusammengestellt. Es gibt keinen signifikanten Unterschied, wenn als Grenzwert für die Festlegung auf einen Seetyp statt 6 Punkten, 8 Punkte gewählt werden. Die Verteilung der Seetypen bleibt annähernd gleich, wenn alle vergeben Punkte für jede Dammart aufsummiert werden.

System	herkömmliche Klassifizierung, Grenzwert 6		geänderte Klassifizierung, Grenzwert 8		Summe aller vergebenen Punkte für jeden Seetyp	
	Absolut	Relativ	Absolut	Relativ	Absolut	Relativ
Moränenmaterial	534	51%	432	54%	5622	54%
Fels	481	46%	334	42%	4527	43%
Eis	8	1%	8	1%	81	1%
Massenbewegung	1	0%	1	0%	10	0%
Anthropogen	21	2%	21	3%	210	2%
Gesamt	1054	100%	796	100%	10450	100%

Tabelle 5.1 Zusammenstellung der Seetypen-Verteilung bei veränderten Kriterien zum Nachweis der Klassifizierungs-Stabilität. Veränderte Kriterien führen zu nur geringen Verschiebungen in der Verteilung.

Wenn man die Verteilung der Seetypen in gletschernahen Gebieten mit denjenigen in gletscherfernen Gebieten vergleicht, fällt auf, dass das Verhältnis zwischen Moränen- und Felsdamm relativ gleich bleibt. Natürlich sind eisgedämmte Seen im gletschernahen Bereich stärker vertreten. Der Gletscherkontakt zeichnet sich nicht nur durch einen Eisdamm aus. Indirekten Kontakt, durch Schmelzwasserzufluss weisen von den 338 gletschernah gelegenen Seen 132 (39%) auf. Von denen haben wiederum 37 Seen (28%) einen direkten Kontakt, der sich durch kalbendes Gletschereis charakterisiert. In dieser Auswertung wurden anthropogene Reservoire nicht berücksichtigt, da die Gletschernähe für diesen Seetyp nicht von Bedeutung ist.

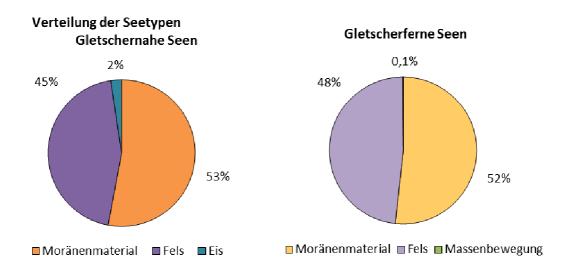


Diagramm 5.2 Vergleich der Seetypenverteilung in gletschernahen und gletscherfernen Bereichen. Die Anteile von Moränen- und Felsdamm sind in beiden Fällen ähnlich denen in der Verteilung aller Seen.

Das Verhältnis von Moränen- zu Felsdamm ist über das gesamte Untersuchungsgebiet relativ konstant. Das zeigt die Seetypenverteilung in den einzelnen Flusseinzugsgebieten, von West nach Ost: Oberer Inn (OIN), Ötztaler Ache (OTZ), Melach (MEL), Sill und Unterlieger (SIL), Ziller (ZIL), Salzach (SAL) und Isel (ISE). Lediglich das Melach-Einzugsgebiet unterscheidet sich mit einem vergleichsweise hohen Anteil (77%) an Seen mit Moränendamm. Dies lässt sich eher durch die geringe Höhenlage des Gebiets erklären, wie das Diagramm 5.5 über die Höhenverteilung zeigt. Auffallend ist die große Menge an Seen in den Einzugsgebieten Ötztaler Ache und Isel, welche sich vor allem aus der Größe des Gebietes ergibt. Zu beachten ist, dass in diesen Regionen ebenso die Seendichte über dem durchschnittlichen Wert von 31 Seen/100km² liegt. Den absoluten Spitzenwert der Seendichte weist das Salzach-Einzugsgebiet mit 42 Seen/100km² auf. Um ein Gefühl für die Bedeutung bzw. Größenordnung dieses Wertes zu bekommen, wird ein Vergleich mit einem Forschungsgebiet in Pamir (Tajikistan) aufgestellt, wo Gletscher wesentlich mehr Fläche einnehmen. Aus dem Inventar von Mergili et al. (2013) das Seen ab einer Oberfläche von 2.500 m² enthält, geht hervor, dass große Flächen Seendichten von über 5 Seen/100km² aufweisen, aber nur kleine Gebiete mit über 10 Seen/100km². Wenn man für das Untersuchungsgebiet in Tirol (Fläche oberhalb 2000 m ü.A.) ebenfalls nur Seen über 2.500 m² heranzieht, erhält man eine durchschnittliche Dichte von 11 Seen/100km².

Verteilung der Seetypen nach Einzugsgebieten

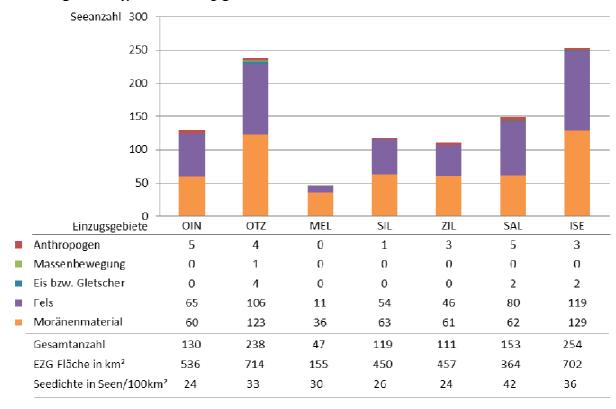
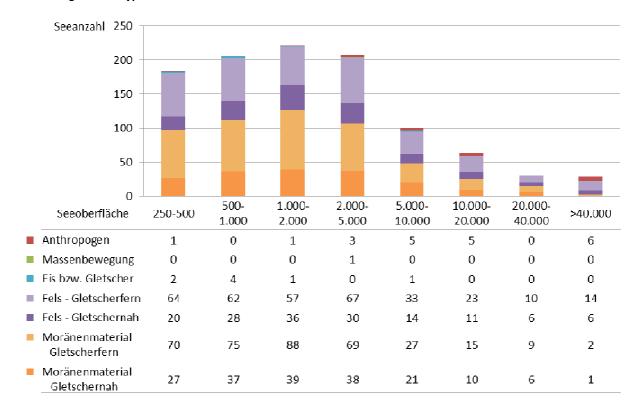
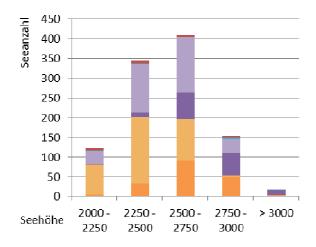
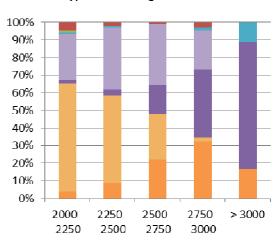


Diagramm 5.3 Anzahl der Seen in den verschiedene Einzugsgebieten, angeführt mit deren Seetypenverteilung, Einzugsgebietsfläche (km²) und der Seedichte (Seen/100km²). Die meisten Seen sind in den großflächigen Einzugsgebieten Ötztaler Ache und Isel zu finde, die größte Seendichte findet sich allerdings im Salzach Einzugsgebiet.

Diese hohe Seendichte ist beachtlich, im Gegensatz dazu ist die durchschnittliche Seegröße im unteren Bereich angesiedelt. Um sich die Größenklassen bildlich vorstellen zu können, sind die Überblicksdaten mit herkömmlichen Spielfeldern verglichen. Seen ab einer Oberfläche von 250 m² wurden kartiert und in die Datenbank mit aufgenommen. Dies entspricht in etwa die Fläche eines Tennisfelds. Die Hälfte der Seen ist kleiner als 1500 m², also der Größe eines Eishockeyfelds und lediglich 15 % kommen an das Ausmaß eines Fußballfelds, 7000 m² heran. Betrachtet man die Seetypenverteilung innerhalb der Größenklassen kann man erkennen, dass abermals das Verhältnis zwischen gletscherfernen und -nahen gleichbleibend ist. Mit steigender Seegröße ist tendenziell ein höherer Anteil an Felsdämmen zu beobachten, genauso steigt die Anzahl von Seen mit anthropogenem Ursprung. Der Median der Seefläche dieser Kategorie liegt bei 10.700 m². Üblicherweise sind dabei die Kleineren Beschneiungsseen, und die Größeren zur Energiegewinnung genutzt. Die Klasse von 20.000 m² bis 40.000 m² ist eine Ausnahme in jeglicher Hinsicht, hier sind weder Stauseen zu finden, noch passt das Verhältnis von Fels- zu Moränendamm in die Reihe. Markant wiederum ist, dass eisgedämmte Seen eher in den kleinen Größenklassen angesiedelt sind und dabei einen Median von 900 m² aufweisen.

Verteilung der Seetypen nach Größenklassen


Diagramm 5.4 Darstellung der charakteristischen Seetypen in Größenklassen. Gut vertreten sind Seen mit einer relativ kleinen Seeoberfläche, der Median der Seegröße liegt bei 1500 m².

Um mehr aus den gesammelten Höhendaten herauslesen zu können, wird neben der Darstellung der absoluten Zahlen auch eine relative Verteilung gezeigt (Diagramm 5.5). Die meisten Seen findet man in mittleren Höhenstufen. Zwischen 2250 m ü.A. und 2750 m ü.A. befinden sich 72 % der Seen. Über 3000 m ü.A. liegen nur noch 18 Seen (1,7 %), vermutlich auf Grund des großen Vergletscherungsanteils und kaum Verebnungen in dieser Höhenstufe. Die Verteilung über die Höhe wurde zuvor angesprochen, um den geringen Felsdammanteil im Melach-Einzugsgebiet zu erklären. Aus der relativierten Darstellung geht hervor, dass in geringen Höhen der Anteil an Seen mit Moränendamm überwiegt, zusätzlich finden sich hier auch ein Großteil der anthropogenen Seen wieder. Mit zunehmender Höhe kehrt sich das Verhältnis von Moränen- zu Felsdamm um. Wie ebenfalls zu erwarten war, sind in tiefen Lagen hauptsächlich die gletscherfernen Seen, egal ob mit Moränen- oder Felsdamm. In hohen Lagen dominiert die glaziale Überprägung und damit die eisgedämmten und die Kategorie der gletschernahen Seen.

Absolute Seetypenverteilung nach Höhenstufen

Relative Seetypenverteilung nach Höhenstufen

Se	ehöhe	2000-2250	2250-2500	2500-2750	2750-3000	>3000
■ Anthropogen		6	7	4	4	0
Massenbewegung		1	0	0	0	0
■ Eisdamm		1	2	0	3	2
Felsdamm - Gletscherferi	ı	32	122	142	34	0
Felsdamm - Gletschernah	ı	3	11	66	58	13
Moränenmaterial - Gletse	cherfern	75	171	105	4	0
■ Moränenmaterial - Gletso	chernah	5	31	91	49	3

Diagramm 5.5 Darstellung der charakteristischen Seetypen in Höhenklassen. Absolut gesehen liegen die meisten Seen zwischen 2250 m und 2750 m ü.A.. Die Relativ-Verteilung zeigt, dass in niederen Lagen der Anteil an moränengedämmten Seen überwiegt. Mit steigender Höhe kehrt sich das Moränen-Fels-Verhältnis um. Zusätzlich dominieren in hohen Lagen die gletschernah gelegenen und die eisgedämmten Seen.

Um die Höhenverteilung der Seen in Verbindung mit der Höhenverteilung des Geländes zu bringen, ist in dem Diagramm 5.6 deren hypsometrische Kurve dargestellt. Daraus ist zu erkennen, dass die Grundfläche des Geländes bis zu der Höhe von 2750 m ü.A. ziemlich konstant bleibt, mit etwa 800 bis 900 km² pro Höhenstufe. Von dieser Höhe an verringert sich die Geländefläche. Wenn man in Relation dazu den starken Anstieg der Seenhypsometrie in den mittleren Höhenstufen betrachtet, erkennt man die hohe Seendichte in diesem Bereich. Geringe Dichten (7 und 14 Seen/100km²) findet man in der höchsten und tiefsten, hohe Dichten (38 bis 50 Seen/100km²) in den mittleren Höhenklassen. Gut sichtbar ist wiederum die charakteristische Höhenlage der anthropogenen und eisgedämmten Seen. Diese zwei Seetypen haben angesichts der geringen Anzahl kaum Einfluss auf die Form der Gesamtkurve aller Seen, welche eindeutig durch die Kurven der moränen- und felsgedämmten Seen bestimmt wird.

Hypsometrische Kurve des Geländes und der Seen

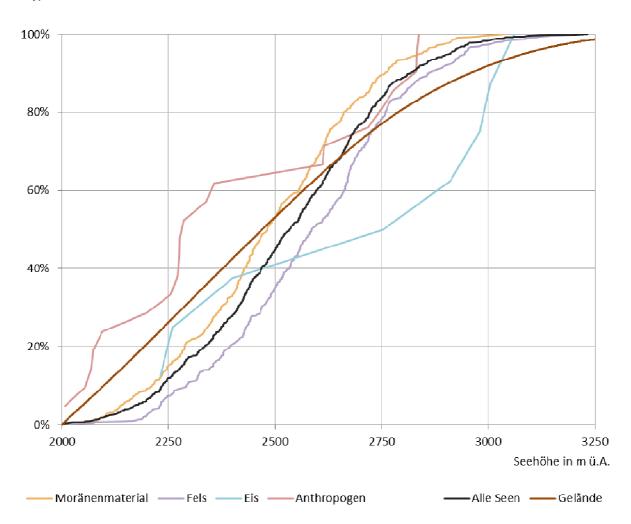
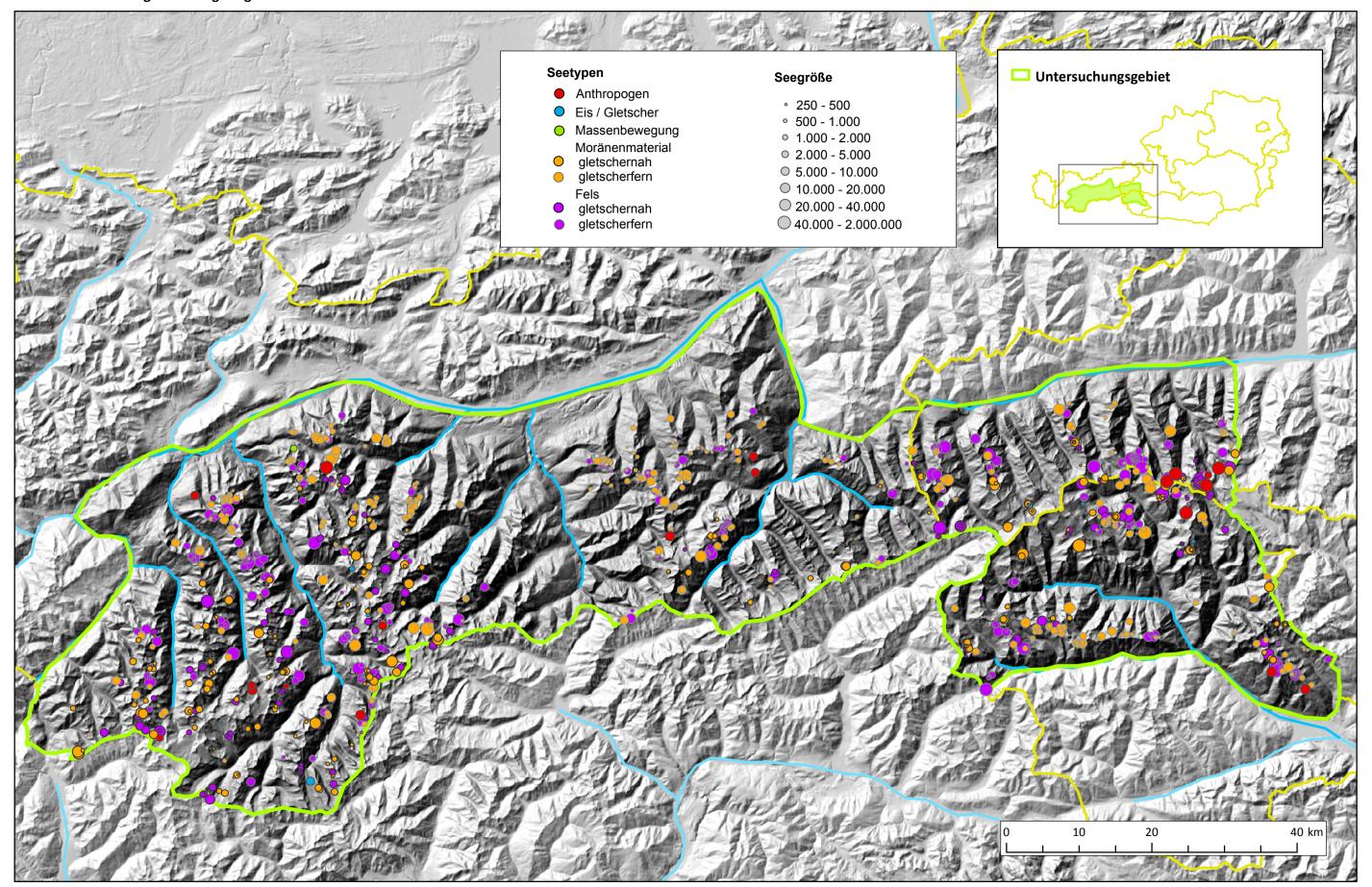


Diagramm 5.6 Höhenverteilung des Untersuchungsgebiets und der Seen dargestellt mittels hypsometrischen Kurven. Bis zu einer Höhe von 2750 m ü.A. ist die Fläche des Geländes gleichmäßig und nimmt darüber ab. Die Steigung der Seenhypsometrie in mittleren Höhen beschreibt die hohe Seendichte in dieser Höhenlage.


Im Alpenraum spielen die Höhe und die Exposition eine tragende Rolle bei der Modellierung von potentiellen Permafrostflächen. Permafrost führt, wie bereits erwäht, zu instabilen Hängen und ist hierdurch ein relevanter Faktor zum Entstehen von Gletschergefahren, insbesondere in Kombination mit Hochgebirgsseen. Die Tabelle 5.2 zeigt die Anzahl der Seen welche in möglichen Permafrostgebieten liegen. 18 % der kartierten Seen sind potentiell von sporadischem Permafrost betroffen. Eine Erwärmung der Lufttemperatur führt klarerweise zu einer Verringerung der Permafrostausdehnung und einer Hebung der Untergrenze. Die Zahlen sollen zeigen, wieviele der jetzt bestehenden Seen von abschmelzendem Permafrost beeinflusst werden können. Von bereits stabilisiert wirkenden Seen könnte, bei den veränderten Bedingungen neuerlich eine Gefährdung ausgehen.

	Jetzt	+ 1 ° C	+ 2 ° C	+ 3 ° C	+ 4 ° C
Sporadischer Permafrost	185	105	44	13	4
Diskontinuierlicher Permafrost	106	27	4	2	0

Tabelle 5.2 Anzahl der Seen welche in potentiellen Permafrostgebieten liegen unterschieden nach sporadischem und diskontinuierlichem Permafrost mit Aussicht auf Verschiebungen bei Temperaturzunahme.

Abgesehen von den gezeigten Statistiken wurde eine Übersichtskarte (A3 Einlage 1) erstellt, welche die räumliche Verteilung der Seen verdeutlicht. Zusätzlich zu Größe und Dammmaterial der Seen kann ausgelesen werden, ob sie der Kategorie gletschernah oder -fern angehören.

Räumliche Verteilung der Hochgebirgsseen

Einlage 1: Kartografische Darstellung der räumlichen Verteilung von Hochgebirgsseen in Tirol (Seetyp und Seegröße)

Mit den vorliegenden Ergebnissen kann festgestellt werden, dass die Höhengrenzen des Untersuchungsgebiets passend gewählt wurden. In den untersten Höhenklassen (2000 m bis 2500 m ü.A.) nimmt die Anzahl der rezent gletschergeprägten Seen stark ab. Hätte man die Begrenzung höher angsetzt, wäre die Inventarisierung schneller realisierbar gewesen und nur wenige gletschernahe Seen wären ausgegrenzt. Dabei wären trotzdem wenige relevante Gebirgsseen unbeachtet geblieben, so hätte man zum Beispiel nicht erwartet einen eisgedämmten See in einer Höhe von nur 2250 m ü.A. zu finden. Das zeigt, dass Zeitersparnis durch Vereinfachungen oft mit Informationsverlust verbunden ist. Diese Aussage trifft auch zu, wenn man das erstellte Inventar ohne weitere Untersuchungen zur Gefahrenbeurteilung heranzieht. Allgemein stimmt, dass von großen Seen und von moränenmaterial- oder eisgedämmten Seen eine größere Gefahr ausgeht. Diese sind durch das Inventar leicht identifizierbar. Jedoch könnten ungünstig gelegene felsgedämmte oder kleinere Seen ebenfalls problematisch sein. Aus dem Grund wird das Inventar von Hochgebirgsseen rein als Informationsquelle für detailliertere Untersuchungen herangezogen.

Wie im Abschnitt der Materialien besprochen, variieren die Aufnahmezeitpunkte von 2000 bis 2007. In erster Linie sind diese Daten alt für ein dermaßen dynamisches Gebiet. In manchen Fällen entwickelten sich aus kleinen Wasserlacken (z.B.: Sulzbachsee, Salzach; Fleischbachsee, Isel) oder aus einer trockenen Sanderfläche (z.B.: Taschachsee, Oberer Inn) bis 2010 enorme Seeoberflächen. Auch der Gletscherkontakt hat sich an einigen Gewässern (z.B.: Schweikertsee, Oberer Inn) von einem direkten zu einem indirekten gewandelt. Dieser momentane Stand konnte wegen veralteter Datengrundlagen nicht dokumentiert werden. Um dieses Defizit zumindest exemplarisch zu kompensieren, behandelt Abschnitt 5.2 die Entstehung ausgewählter Gletscherseen und deren Entwicklung über eine Zeitspanne von 1954 bis jetzt.

5.2 Analyse der Entwicklung ausgewählter Seen

Mittels historischer Bilderserien kann das Heranwachsen von Seen im Gletscherrückzugsgebiet nachträglich betrachtet werden. Anhand des leitenden Beispiels, dem Vogelhüttenkomplex im Ridnauntal (Südtirol), wird der Zusammenhang der Suszeptibilität und des Gefahrenpotentials nach den Erkenntnissen aus Emmer et al. (eingereicht) dargestellt. Nachfolgend werden verschiedene Seen beschrieben, welche typisch für die alpine Region sind. An dieser Stelle wird darauf hingewiesen, dass obwohl interessante Seen in Salzburg zu finden wären, diese nicht für Detailbetrachtungen ausgewählt wurden, da bereits zahlreiche Forschungen in dem Gebiet laufen (Wiesenegger et al., 2013; Geilhausen et al., 2012; Slupetzky, 1997; Seitlinger, 1999).

5.2.1 Vogelhüttenseenkomplex

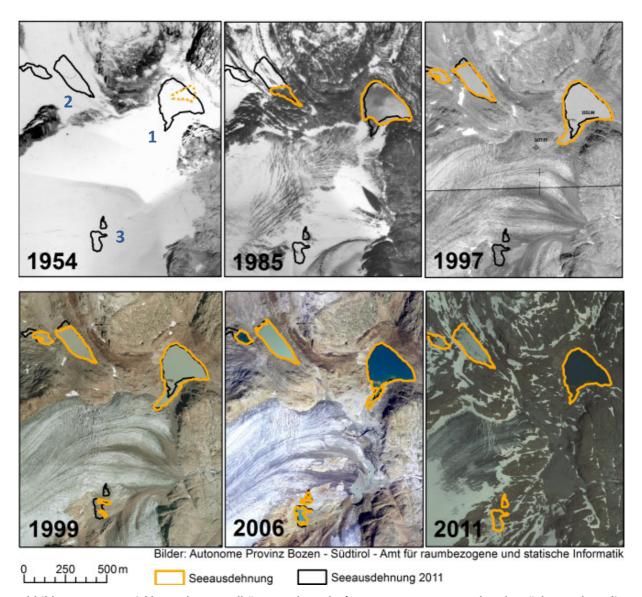


Abbildung 5.1 Entwicklung des Vogelhüttenseekomplex´ von 1954 an. Der Gletscherrückgang hat die Entstehung zahlreicher Seen zur Folge. Die Nummerierung der Seen nach deren Erscheinungsreihenfolge und deren Benennung ist im ersten Bild festgelegt: 1 – Vogelhüttensee, 2 – Bechersee, 3 – Übelrittsee.

Um die Beschreibung zu erleichtern, wurden die namenlosen Seen als Bechersee (2) und Übelrittsee (3) benannt. Der Vogelhüttensee (1) hatte sein erstes Erscheinen in den 1950er Jahren. In den 1960er folgte ein beschleunigter Rückzug der Gletscherzunge, welcher in den 1970ern wiederum langsam vor sich ging (Hydrographisches Amt Bozen, 2006). Diese Wandlung der Gletscherfläche des Übeltalferners, von 1954 bis 1985, bewirkte das Anwachsen des Sees auf eine Fläche von 60.000 m². Dieser See wird südlich durch den Gletscher gestaut und von eben diesem mit Schmelzwasser versorgt. In östliche Richtung bahnt sich der Abfluss über eine von Moränenblöcken überlagerte Felsschwelle den Weg ins Tal. Als Folge des Abschmelzens, durch den anhaltenden Zufluss vergrößerte sich der See stetig und die Uferlinie erweiterte sich mit dem Zurückweichen der Gletscherzunge Richtung Süden. 1999 hatte der Vogelhüttensee einen Höchststand von 75.000 m² erreicht. Am Nachmittag des 15. Juli 2005 bahnte sich das Wasser schlussendlich einen Weg durch

den Eisdamm und entleerte an diesem Tag eine Million m³ aus dem See. Das entspricht einem Ausfluss von 11 m³/s (Munari et al., 2007). Mit dem Abschmelzen des Dammes ging auch das Entfallen des Schmelzwasserzuflusses einher, so schrumpfte der See bis 2011 auf eine Größe von 57.000 m³.

Abbildung 5.2 Vogelhüttensee 1986 (links; www.becherhaus.com) und 2014 (rechts). Der Gletscher, welcher ursprünglich als Damm des Sees fungierte zog sich in den knapp 30 Jahren mehrere 100 Meter vom See zurück. Dadurch verlagerte sich der Ausfluss am 15. Juli 2005, und verursachte eine erhöhte Abflussfracht.

Wenn man versucht in die Zukunft des Sees vorherzusagen, könnte ihm Ähnliches geschehen wie dem Bechersee. Dieser befindet sich bereits in einer stabilen Phase. Bei Begehungen im September 2014 konnte ein früherer, etwa um einen Meter höher gelegener Wasserspiegel durch ufernahe Seesedimente festgestellt werden. Wenn man die Luftbilder von 1985 und 1997 genau betrachtet, lag der Ausfluss zuvor etwa 50 m weiter im Osten. Den Aufnahmen nach zu beurteilen, grub sich der Abfluss tiefer in die proglazialen Ablagerungen ein, bis er auf festen Fels stieß. Folgend verlor er durch Verlandung mit Sedimenten an Tiefe und damit an Volumen. Der Übelrittsee (3), erstmals 1999 erschienen, befindet sich im Gegensatz dazu noch in der Wachstumsphase. Angesichts des geringen Vergrößerungspotentials auf Grund der Morphologie wird der See nicht weiter behandelt. Aus den Beschreibungen kann man ableiten, dass man die Entwicklung von Gletscherseen in verschiedene Phasen einordnen kann, was auch in Abbildung 5.3 ersichtlich ist. In der Entstehungsphase (proglazial), die über wenige Jahre aber auch Jahrzehnte laufen kann, nimmt der See stark an Volumen zu. Über diese Zeit ist die Suszeptibilität, also die Empfindlichkeit gegenüber eines Seeausbruchs enorm hoch. Zu Beginn bringt die stetige Veränderung und damit verbundene Instabilität im Einzugsgebiet, die hohe Versagensanfälligkeit. Hinzu kommt die größere Belastung des Dammes durch den steigenden Seespiegel. Dies lässt die Gefahr auf ein Maximum anwachsen, da sich das involvierte Volumen bei einem gegebenen Seeausbruch vermehrt. Die Stabilisierungsphase (periglazial) zeichnet sich durch ein Ende des Seewachstums und eine Festigung des Dammes und des umliegenden Geländes aus, wodurch die Suszeptibilität und damit auch die Gefahr einer Flut schrumpfen. In die letzte Phase (nicht-glazial) sind Seen einzuordnen, welche im Inventar als gletscherfern bezeichnet wurden, und somit kein Gletscher mehr im Einzugsgebiet zu finden ist. Ein möglicher Ausbruch dieser Seen wird vorwiegend durch nichtgletscherbegründete Prozesse, wie Steinschlag oder Erdbeben, ausgelöst.

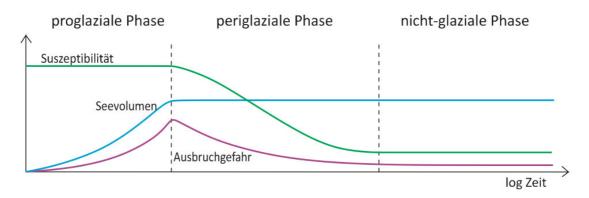


Abbildung 5.3 Gletscherseen-Entwicklung über die Zeit mit Darstellung des Volumenzuwachses (blaue Linie), des Suszeptibilitätsrückgangs (grüne Linie) und des Gefahrenpotentials (lila Linie); (nach Emmer et al., eingereicht). In der Entwicklung sind die drei Hauptphasen pro-, peri-, und nicht-glazial voneinander zu unterscheiden. Die für die Entwicklungsanalyse ausgewählten Seen (Vogelhütten-, Berglas-, Ölgruben- und Schweikertsee) befinden sich in der periglazialen Phase und der Fleischbachsee ist noch in der proglazialen Wachstumsphase. Etwa 80% der kartierten Seen im Inventar sind bereits in der nicht-glazialen Phase angekommen.

5.2.2 Berglassee

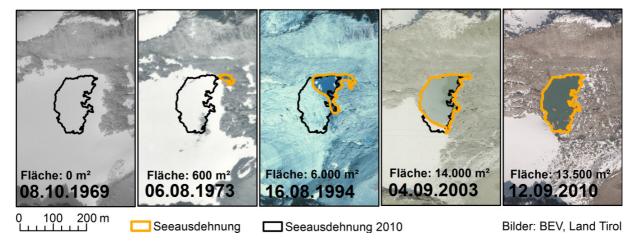


Abbildung 5.4 Entwicklung des Berglassees. Mit dem Rückzug des Gletschers entsteht der See der stetig an Volumen zunimmt.

Eine dem Vogelhüttensee (Nummer 5 in Abbildung 3.1) ganz ähnliche Entwicklung zeigt der Berglassee (Nummer 4 in Abbildung 3.1). Nach dem ersten Erscheinen 1973 wuchs er kontinuierlich an. Er wird im Süden durch die Gletscherzunge gestaut und fließt am nördlichen Ende Richtung Osten aus. Mit dem Rückzug des Gletschers verlagerte sich der Ausfluss zwischen 2003 und 2010 auf das südliche Ende des Sees und verlor dabei an Fläche. In diesem Fall kann man den See bereits als stabil betrachten, weil der Damm und das umliegende Gelände aus festem Fels mit kaum einer Lockermaterialauflage bestehen. Den einzigen unsicheren Faktor stellt der immer noch an den Seerand reichende Gletscher dar, vermutlich aber nicht mehr lange.

5.2.3 Ölgrubensee und Weißmaurachsee

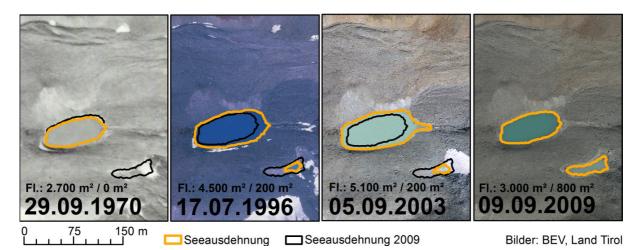


Abbildung 5.5 Entwicklung der Ölgrubenseen. Aus östlicher Richtung werden die Seen von Gletscher-Schmelzwasser gespeist. Ohne oberflächigen Abfluss wird der Seespiegel von Zufluss- und Versickerungsrate bestimmt.

Einen starken Kontrast zu den bisherigen Beispielen bieten die Ölgrubenseen (Nummer 2 in Abbildung 3.1), welche in einer mächtigen Lockermaterialmasse liegen. Die Umgebungsstrukturen deuten darauf hin, dass dieses Lockermaterial nicht unbedingt als Moräne abgelagert, sondern eventuell als Blockgletscher verlagert wurde. Durch die Untergrundverhältnisse bildete sich nie ein oberflächiger Abfluss aus. Das wechselnde Wachsen und Schrumpfen der Seeoberfläche ist nicht nur in den Luftbildern zu sehen. Auch bei den Geländeaufnahmen wurde rund um den See eine noch feuchte Schluffschicht bemerkt. Es hängt somit von dem variierenden Verhältnis von Zufluss und Versickerrate ab, wie der Wasserspiegel variiert. Da der Zufluss üblicherweise mit Schneeschmelze und Sommerniederschlägen ansteigt, ist zu dieser Zeit mit einem erhöhten Wasserstand zu rechnen. Diese saisonalen Schwankungen können mit der vorliegenden Datengrundlage, angesichts der groben zeitlichen Auflösung der Luftbilder, nicht dargelegt werden. Um jahreszeitliche Veränderungen zu erfassen, wären regelmäßige Begehungen oder die Installation eines automatisierten Beobachtungssystems notwendig.

Zuvor wurde festgehalten, dass das Durchsickern eines Dammes problematisch sein kann, weil Feinmaterialien ausgetragen werden und der Strömungsdruck zusätzlich belastend wirkt. In diesem Fall kann durch augenscheinliche Beurteilung eine ernsthafte Gefahr ausgeschlossen werden. Das talab liegende Ende des Blockgletschers und der Austritt des versickerten Wassers sind etwa 1200 m von den Seen entfernt. Im Vergleich zur Lockermaterialmasse nehmen die Seen eine geringe Fläche ein. Das begrenzte Seenvolumen würde nicht ausreichen um große Massen des Dammmaterials in Bewegung zu setzten.

Anders präsentiert sich ein See desselben Typs im Pitztal, der Weißmaurachsee (Nummer 3 in Abbildung 3.1). Entstanden ist er in den 1950ern und wuchs bis in die 1970er stetig an. Von da an macht er ähnliche Wasserspiegelschwankungen wie die Ölgrubenseen mit. Der Sickereffekt in Verbindung mit der Dammgeometrie kann hier problematisch sein. Seit 40 Jahren, trotz schwankendem Seespiegel, bildeten sich keine Instabilitäten aus. Ungeachtet dessen ist es problematisch den Damm als stabil anzusehen, da er innerhalb eines potentiellen Permafrostgebiets liegt.

Abbildung 5.6 Der Weißmaurachsee wird von einem südöstlich gelegenen Kargletscher gespeist. Das Seewasser sickert durch den Moränendamm. (Bild: tirisMaps)

5.2.4 Schweikertsee

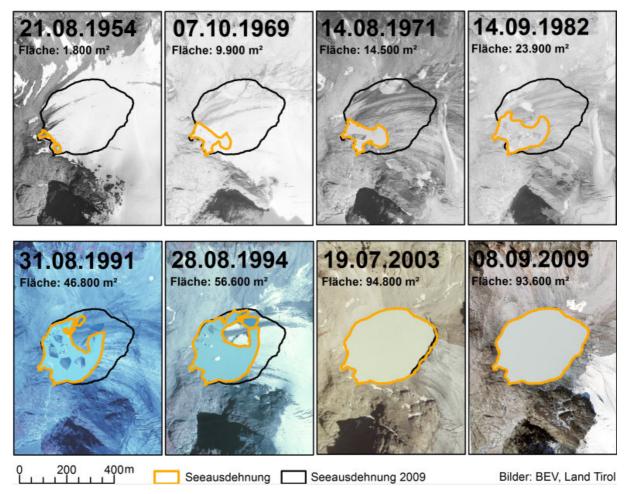


Abbildung 5.7 Entwicklung des Schweikertsees. Von den 1950ern wächst die Seeoberfläche, ab 2003 bleibt die Größe konstant, wobei der Gletscher sich weiter zurück zieht und den direkten Kontakt verliert.

"Bilder sagen mehr als tausend Worte" – Der Schweikertsee (Nummer 1 in Abbildung 3.1) stellt ein Paradebeispiel für einen felsgedämmten Gletschersee dar. Das Schmelzwasser stürzte wahrscheinlich schon vor dem Aufstau über die stabile markante Felsschwelle, wo der Ausfluss des Sees bis heute unverändert liegt. Von den 1950ern an, in den Jahren des Wachstums verlängerte sich die vordere Uferlinie zwar, blieb aber lagemäßig stabil. Ohne genaue Felseigenschaften des Dammes zu kennen, kann man sagen, dass eine mögliche Gefahr vor allem aus dem Einzugsgebiet und nicht von einem Dammversagen ausgehen könnte. Es wurde keine Dokumentation bezüglich Flutwellen gefunden, aber kleinere Schwalle durch kalbendes Gletschereis wären speziell bei der Konstellation 2003 zu erwarten gewesen. In Abbildung 5.12 (Abschnitt der Gefahrenbeurteilung) ist das seeumfassende Kar mit möglichen Gefahren gut erkennbar. Der Gletscher im Osten hat heute keinen Anschluss mehr an den See, und ist somit nicht mehr als problematisch anzusehen. Im Gegensatz dazu lagern nördlich und westlich Verwitterungs- und Moränenschutt bis 100 m über den Seespiegel, welcher in den See rutschen könnte. Ca. 150 m nordöstlich des Ufers steht eine etwa 100 m hohe und 100 m breite Felsflanke vom Hang ab. Um deren Stabilität zu beurteilen sind Felseigenschaften und Klüfftung aufzunehmen. Wenn ein Felssturz von dieser Flanke ausgehen sollte, ist ein Seeausbruch eine sehr wahrscheinliche Folge.

5.2.5 Fleischbachsee

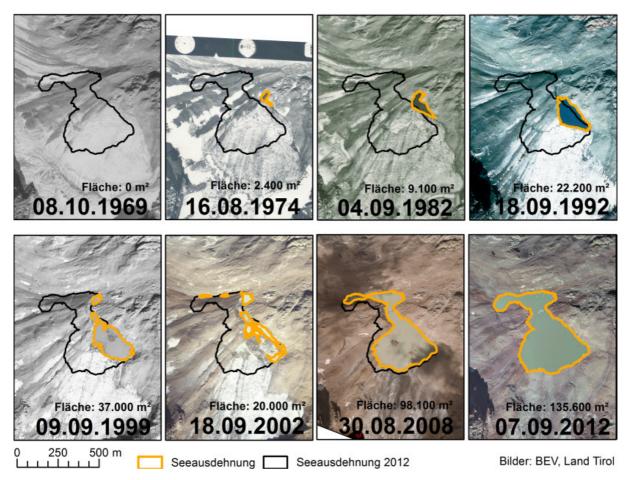


Abbildung 5.8 Entwicklung des Fleischbachsees. Von den 1970ern hält das stetige Wachstum immer noch an.

Das "frischeste" Beispiel, mit einem immer noch währenden Anwachsen, bietet der Fleischbachsee (Nummer 6 in Abbildung 3.1). Der Seetyp stellt eine Mischform dar, wobei der Damm aus festem Fels und Moränenmaterial besteht. Auf Grund der schweren Erreichbarkeit gab es keine Geländeaufnahmen bei diesem See, ohne die sichere Aussagen schwer zu treffen sind. Vermutlich ist die tragende Hauptkomponente Fels, der teils stark mit Moränenmaterial überlagert ist. Der Abfluss ist am nördlichen Ende Richtung Osten oberflächig erkennbar, jedoch ist eine zusätzliche Durchsickerung an manchen Stellen nicht auszuschließen. Vom ersten Erscheinen im Jahr 1974 wächst der See stetig an, wobei sich die Lage des aktuellen Ausflusses erst 1999 einstellte. Im Jahr 2002 scheint die Seeoberfläche wieder stark verkleinert zu sein. Es gibt keine kontinuierlichen Aufzeichnungen zur Ausbreitung des Fleischbach Ferners, aber in diesem Jahr wurde österreichweit ein extremer Gletscherschwund beobachtet. Es ist aus der Aufnahme nicht eindeutig sichtbar, aber vielleicht haben sich größere Eisplatten vom Gletscher gelöst, schwimmen auf dem See und lassen ihn damit kleiner erscheinen. Die weitere Flächenzunahme läuft relativ rasch ab, wobei die Oberfläche bis 2012 auf 135.600 m² anwächst. Zukünftige Entwicklungen sind nicht abschätzbar. Denkbar ist eine weitere Vergrößerung in westliche Richtung, wenn sich das Gletschereis zurückzieht. Ob der See eine Gefahr für die im Tal liegenden Almen darstellt, kann nur durch eine Modellierung der möglichen Flutwelle beantwortet werden (siehe Abschnitt 5.3.2).

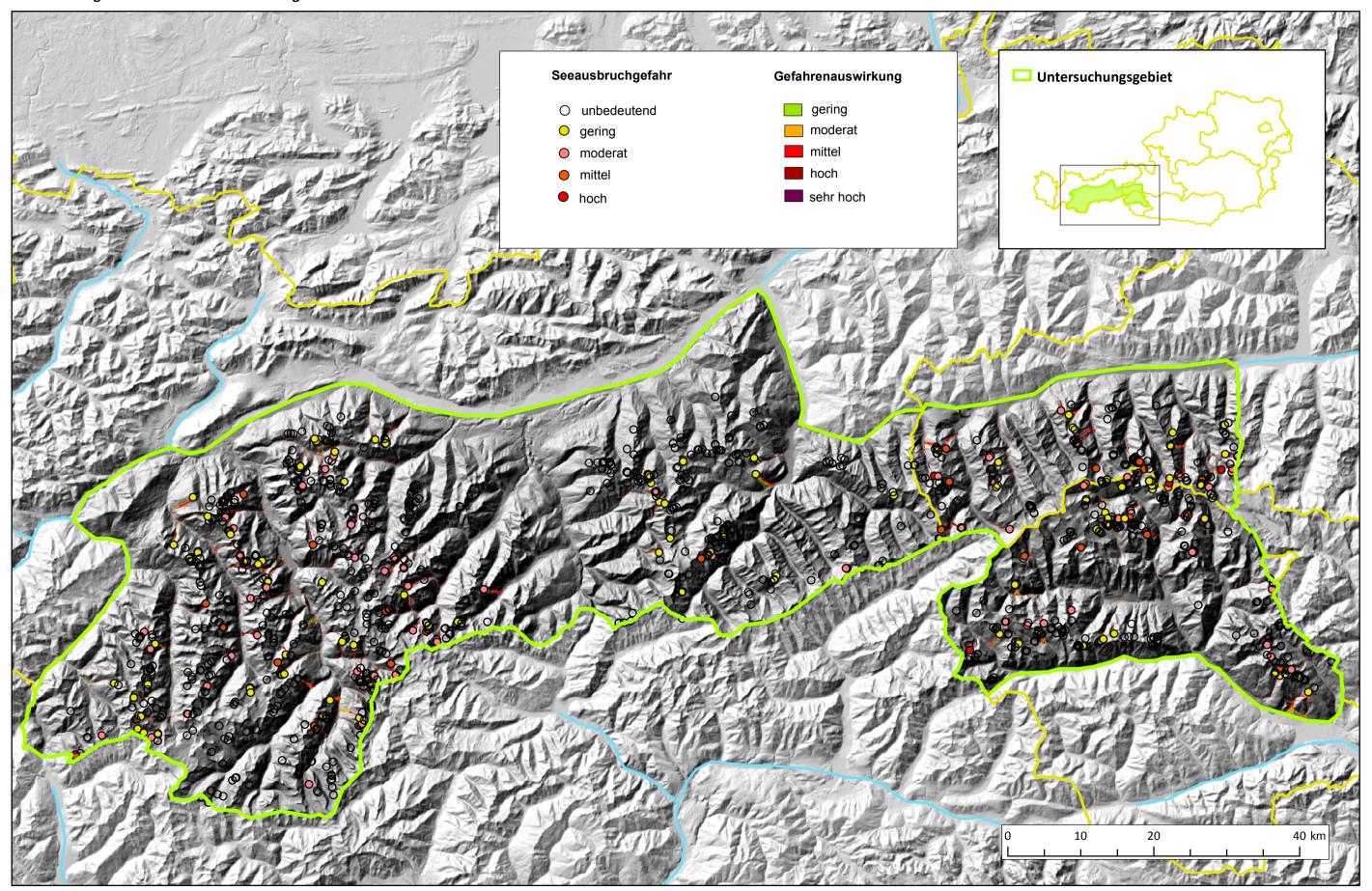
Es gibt weiter Länder, wie Österreich welche den Gletschergefahren in der Vergangenheit nicht allzu viel Aufmerksamkeit gewidmet haben. Neben den typischen Gletscherländern in Asien und Europa findet man Studien aus z.B. Neuseeland (z.B.: Hoffmann, 2013), Bolivien (z.B.: Weggenmann, 2011) und Georgien (z.B.: Stokes et al., 2007) die sich mit der rasanten Gletschersee-Entwicklung auseinandersetzten. In allen Studien wird die steigende Anzahl an Seen mit dem Abschmelzen der Gletscher in Zusammenhang gebracht. Trotz dieser Gemeinsamkeit, unterscheidet sich bei genauerer Betrachtung die Seenentwicklung. In Neuseeland bestehen 12 Hauptgletschertäler, welche ein geringes Gefälle und weitläufige Moränenauflagen aufweisen. Seit 1980 wird die Entstehung von supra-glazialen Teichen beobachtet, die in den 1990ern zu enormen proglazialen Gletscherseen anwuchsen. Ihnen wird trotzdem keine hohe Ausbruchsgefahr zugesprochen, da die langen Täler flach sind und sich das dämmende Lockermaterial als relativ stabil angesehen wird (Hoffmann, 2013). Dieses neue Naturphänomen wird vor allem auch touristisch genutzt. Im Gegensatz dazu findet man z.B. in Peru (Emmer und Cochanchin, 2013) eine Seenkonstellation welche kritisch betrachtet wird. Häufig bilden sich Seekaskaden aus. Angesichts der erhöhten Gefahr durch Kettenreaktionen wird aktiv am Gletscherrisikomanagement gearbeitet. Diese Beispiele sollen zeigen, dass Erkenntnisse aus einem bestimmten Untersuchungsgebiet nicht immer auf andere übertragbar sind. In Bezug auf die Ausformung der Seen (deren Größe, Dammmaterial, Einzugsgebiet,...) ist die geologische Basis in Zusammenspiel mit den Gletschern prägend. Trotzdem ist die Botschaft aus Abbildung 5.3, dass tendenziell bei der Entstehung und beim Wachstum erhöhte Gefahr besteht, allgemein gültig.

Einen neuen Blickwinkel bietet der Ansatz von Linsbauer (2008) und die Anwendung für Österreich von Koehler (2014). Dabei werden GIS-basiert Gletscherbette modelliert um das Entstehen von zukünftigen Gletscherseen vorherzusehen. Eingang in die großflächige Berechnung mit GlabTop finden Gletscherumrisse, ein DGM und manuell erstellte Fließlinien. Auch wenn die Resultate noch Unsicherheiten bergen, können damit potentielle negative Folgen des Klimawandels frühzeitig erkannt werden. Um momentan herrschende Gefährdungen aufzuzeigen wird nun auf die Ergebnisse der Modellierung mit r.glof eingegangen.

5.3 Beurteilung des Gefahrenpotentials

Wie zuvor angesprochen ist es nach rein augenscheinlicher Betrachtung schwer festzustellen, ob von einem See eine konkrete Bedrohung ausgeht. Eine einheitliche Beurteilung ist mit Hilfe von Berechnungen abzugeben. Nach einer überblicksmäßigen Darstellung der Gefahrenpotentialmodellierung für das gesamte Untersuchungsgebiet werden relevante Seen ausgewählt und im Detail besprochen.

5.3.1 Allgemeine Ergebnisse


Von den 1045 kartierten Seen wurden 196 Seen identifiziert, die ein gewisses Ausbruchspotential aufweisen. Davon wurden 94 Seen eine geringe, 69 Seen eine moderate, 29 Seen eine mittlere und 4 Seen eine hohe Gefahrenstufe zugeordnet. Drei der hochgefährlich eingestuften Seen sind künstliche Stauseen und in der Modellierung vorwiegend wegen der enormen Volumina und der schlanken Dammgeometrie als solche deklariert. So verbleibt als einziger natürlicher See, mit einer hohen Gefahr auszubrechen, der schon behandelte Fleischbachsee in Osttirol. Eine weitere Information welche das Modell liefert, ist die Gefahr die von der entstehenden Futwelle oder Mure ausgehen kann. Hier wird darauf hingewiesen, dass nur die Gefahr, nicht das Risiko berechnet wurde. Um dieses Risiko anzudeuten, wurde kontrolliert wieviele der Ausflussbereiche bis zum besiedelten oder mit Infrastruktur verbauten Talboden reichen. Auswirkungen mit hoher und sehr hoher Gefahrenstufe treten potentiell als Murgänge auf, darunter eher als Flutwelle. Eine mittlere Gefahrenstufe verursacht der Ausbruch von ca. 80 Seen. Manche dieser Fluten versiegen laut Modell noch in hohen Berglagen, oder nehmen bis sie im Tal ankommen an Gefährlichkeit ab. Wenn es bei diesen Seen zu Ausbrüchen kommt, könnte der Hauptabfluss von 47 Seen die im Tal Lebenden mit einer mittleren Gefahrenstufe bedrohen. Von etwa 70 Seen geht eine hohe Gefahr aus, wobei die Flut oder Mure von 23 bis ins Tal reichen könnte. 3 Seen erhielten eine sehr hohe Gefahreneinstufung. Deren Ausbruch würde Almwirtschaften bzw. Straßen treffen. Einer der drei Seen ist wiederum der Fleischbachsee, somit ein weiteres Zeichen diesen See genauer unter die Lupe zu nehmen. Die anderen zwei hoch gefährdenden Seen liegen in Salzburg im Wildgerlos- und Amertal und werden aus schon genannten Gründen nicht weiter behandelt.

Seeausbruchgefahr (H)	Seenanzahl	Gefahrenauswirkung (HI)	Seenanzahl	
gering	94		allgemein	bis ins Tal
moderat	69	mittelmäßig	~ 80	47
mittel	29	hoch	~ 70	23
hoch	4	sehr hoch	3	3

Tabelle 5.3 Anzahl der Seen im Untersuchungsgebiet mit möglichem Gefahrenpotential. Das Ergebnis der großflächigen Seeausbruchmodellierung mit r.glof zeigt, dass von einigen tiroler Seen eine Gefahr ausgeht.

Die folgende Abbildung (A3 Einlage 2) stellt die Ergebnisse grafisch dar. Klar ersichtlich ist die Seeausbruchsgefahr, auf Grund des kleinen Maßstabes sind die Gefahrenauswirkungen kaum erkennbar und werden exemplarisch in Abschnitt 5.3.2 Fleischbachsee, 5.3.3 Schweikertsee und 5.3.4 Weißmaurachsee erklärt.

Seeausbruchgefahr und Gefahrenauswirkung

Einlage 2: Kartografische Darstellung der Seeausbruchgefahr und Gefahrenauswirkung

Ziel der Berechnung war potentiell gefährliche Seen und womöglich betroffene Flächen zu identifizieren. Durch die relativ geringen Anforderungen an Eingangsdaten können große Gebiete untersucht, jedoch keine hoch detailierten Ergebnisse erwartet werden. So finden zum Beispiel keine Felseigenschaften, kein geologischer Hintergrund und keine Vegetationseinflüsse Eingang in die Berechnung. Des Weiteren beziehen sich die empirischen Formeln zur Abschätzung des Maximalabflusses größtenteils auf von Massenbewegung gedämmte Seen. Zuletzt weist die Flutabflussberechnung zur Bestimmung der betroffenen Flächen in der verwendeten Version von r.glof noch Schwachstellen auf, welche bereits überarbeitet wurden (Verwendung der neuen Version z.B. in Gruber und Mergili, 2013). Trotz all der Unschärfen liefert das Modell genau das, was Ziel der Berechnung war, die Auffindung potentiell gefährlicher Seen. Man darf bei der Interpretation der Ergebnisse nicht die Hintergründe der Modellierung vergessen..

Die Studie von Mergili und Schneider (2011) enthält eine gleichwertige Gefahrenanalyse von Gletscherseen in Tajikistan. Das Vergleichsgebiet umfasst den südwestlichen Bereich des Pamirgebirges und nimmt eine Fläche von etwa 8430 km² ein (2,5-mal größer als das österreichische Untersuchungsgebiet). Von 408 untersuchten Seen bekamen 6 Seen eine sehr hohe, 34 Seen eine hohe, 87 Seen eine mittlere, 35 Seen eine geringe Gefahreneinstufung. Die vergleichsweise hohe Anzahl gefährlicher Seen ergibt sich, einerseits aus den großen Seeoberflächen und dem überwiegenden Prozentsatz von Lockermaterial gedämmten Seen und andererseits von der seismischen Aktivität dieser Region. Zusätzlich konnte in diese Studie die erhöhte Gefahr bei wachsenden Seen berücksichtigt werden.

In der Studie von ICIMOD (2011) in Nepal basiert eine erste Vorauswahl an potentiell gefährlichen Seen, rein auf Seegröße und Gletscherkontakt. Nicht in detaillierte Untersuchungen einbezogen werden alle Seen deren Oberfläche kleiner als 20.000 m² ist. Aus dem österreichischen Inventar würde diese Bedingung lediglich auf 10 natürliche Seen zutreffen. Das Untersuchungsgebiet in Nepal unterscheidet sich insofern, dass besiedelte Gebiete fern von vergletscherten Flächen liegen. Nur Seeausbrüche einer hohen Magnitude, folglich eines großen Sees können diese Strecken zurücklegen. Das erklärt gleichzeitig, wieso die verhältnismäßig kleinen Gletscherseen in den Alpen trotzdem eine Gefährdung für Menschen darstellen können (auch in: Huggel et al., 2002). In Nepal wurden von 49 Seen, welche größer als 20.000 m² mit direkten oder indirekten Gletscherkontakt aufgefunden. Die erweiterte Identifizierung kritischer Seen bezieht sich auf Eigenschaften des Dammes, Seewachstums, Gletschers, Gletscherkontakts und des Einzugsgebietes. Dieser Schritt wurde in der vorliegenden Arbeit durch das Programm r.glof automatisiert durchgeführt. Mit einem sorgfältig erstellten Inventar bietet diese Software ein wertvolles Werkzeug zur Erkennung von gefährlichen Hochgebirgsseen. Anschließend sind jedoch in beiden Fällen Detailmodellierungen, Entwicklungsmonitoring und/oder Geländeaufnahmen erforderlich.

5.3.2 Fleischbachsee

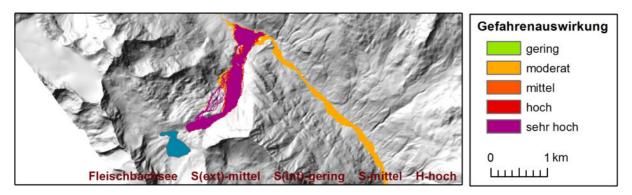


Abbildung 5.9 r.glof Ergebnis: Seeausbruch-Gefahrenpotential Fleischbachsee (Darstellung der Ergebnisse nach einer in Weiterentwicklung befindlichen Version von r.glof).

Als einziger natürlicher, von der Modellierung als sehr gefährlich eingestufter See, werden die Ergebnisse des Fleischbachsees nun im Detail behandelt. Die ausschlaggebenden Faktoren sind hier vor allem die Hangneigung des Einzugsgebietes und die Größe des Sees. Erstere spiegelt sich in der berechneten Suszeptilibität (S) wieder, die sich aus der geringen internen (S_{int}) und der mittleren exterenen (S_{ext}) zusammensetzt. Das bedeutet, der Damm droht nicht ohne Fremdeinwirkung zu brechen. Eine Flut kann vorallem durch eine Massenbewegung in den See entstehen. Dafür bietet das Einzugsgebiet einerseits von Steinschutt überlagertes Gletschereis, andererseits die steile Bergflanke des Lenksteingipfels. Am Fuße der Felswand sind die Zeichen der Gletschererosion durch die Übersteilung erkennbar und stellen wiederum eine Schwachstelle im System dar. In Verbindung mit der hohen möglichen Magnitude eines Ereingnisses, ergibt sich die Zuordnung einer hohen Ausbruchsgefahr (H) mit sehr bedrohenden Auswirkungen auf den Auslaufbereich (HI). Im Talboden liegen die Obere und Untere Seebach Alm und eine Straße, die weiter talein führt. Die beiden Almen wurden auf leichten Anhöhen, orografisch rechts und links der Seebachklamm errichtet. Das könnte ein Anzeichen für zuvorgegange Hochwasser- oder Murereignisse aus dem Seebacheinzugsgebiet sein. Da das Ausflussgebiet aus der groben großflächigen Modellierung stammt, kann dies nicht sicher als gegeben, sondern mehr als Tendenz verstanden werden.

Abbildung 5.10 Fleischbachsee 2010, vom See hangauf bestehen Flächen, von Lockermaterial bedecktem Gletschereis. Das gleiche Material überlagert ebenfalls den Felsdamm (Bild: www.alpen-panoramen.de).

5.3.3 Schweikertsee

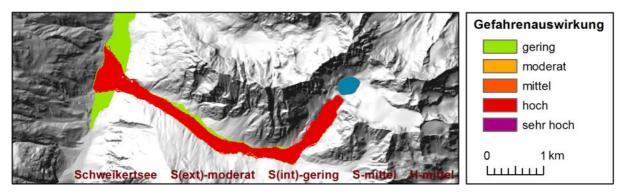


Abbildung 5.11 r.glof Ergebnis: Seeausbruch-Gefahrenpotential Schweikertsee (Darstellung der Ergebnisse nach einer in Weiterentwicklung befindlichen Version von r.glof).

Ganz ähnlich stellt sich die Problematik beim Schweikertsee dar. Auf Grund der etwas geringeren externen Suszeptibilität wird diesem See auch eine geringere Gefahr eines Seeausbruchs zugewiesen. Mit der geringeren Gefahr eines Dammversagens wird auch die Bedrohung durch die entstehende Flutwelle herabgesetzt. Damit finden sich hier keine sehr hoch gefährdeten (violetten) Flächen im Auslaufbereich. Der direkte Gletscherkontakt ist bereits abgebrochen, somit ergibt sich die Gefahr aus dem Einzugsgebiet durch eine etwa 100 m hohe Schutthalde und einer vorspringenden Felsfront (wie in Abschnitt 5.2.4 beschrieben). Im Unterschied zum Fleischbachsee, liegen im Ausflussgebiet dauerbewohnte Ortschaften (Feichten und Mühlbach im Kaunertal) für die ein Risiko besteht. Zu diskutieren ist wiederum der modellierte Ausflussbereich, da kein Bruch der dämmenden Felsschwelle zu erwarten ist, und sich nicht das gesamte Seevolumen entleeren wird. Bei einer geringeren Magnitude könnten die Massen anhalten bevor sie den Talboden erreichen.

Abbildung 5.12 Schweikertsee 2014, seit wenigen Jahren (5-10) besteht kein direkter Gletscherkontakt mehr. Im Seeeinzugsgebiet fallen weiters der abstehende Fels im Zentrum des Bildes und die Lockermaterialhalden links auf. Der Abfluss läuft seit der Seeentstehung in den 1950ern über eine Felsschwelle, rechts im Bild.

5.3.4 Weißmaurachsee

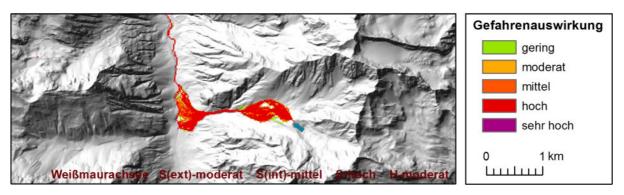


Abbildung 5.13 r.glof Ergebnis: Seeausbruch-Gefahrenpotential Weißmaurachsee.

Trotz einer nur moderaten Gefahrenstufe wird auch der Weißmaurachsee behandelt, weil sich seine Klassifizierung von den anderen Beispielen unterscheidet. Als rein Moränengedämmter See mit einem durchsickerten Damm, wird die interne Suszeptibilität höher gewertet als die externe. Im Vergleich ist die Seeoberfläche mit etwa 13.000 m² geringer und dadurch die mögliche Magnitude kleiner. Trotzdem sind Auswirkungen eines Seeausbruches als hoch gefährlich eingestuft, wovon ein kleiner Ort (Weißwald) betroffen sein könnte. Wie bei der Analyse der Seeentwicklung angesprochen wird angenommen, dass der Seespiegel je nach Zufluss und Versickerungsrate schwankt. Damit schwankt auch die Gefahr eines Seeausbruches, welche im Sommer höher ist als gegen Ende des Jahres. Nach Angabe eines Ortskundigen, Wolfgang Gurk (DAV Rüsselsheim) kam es in manchen Herbsten annähernd zur gänzlichen Austrocknung des Sees. Diese letzten Sätze zur Gefahrenbeurteilung sollen in Erinnerung rufen, dass neben Modellierungen oft auch die Informationen von Ortsansässigen hilfreich sind.

Abbildung 5.14 Weißmaurachsee, Gletschereis ist nur noch wenig in dem links gelegenen Kar zu finden. Der Damm aus Moränenmaterial wird durchsickert (Bild: Wolfgang Gurk).

6 Folgerungen und Ausblick

Mit dieser Arbeit werden Daten über den momentanen Zustand von Hochgebirgsseen, die Entwicklung von Gletscherseen und von ihnen potentiell ausgehende Gefahren im Untersuchungsgebiet Tirol zu Verfügung gestellt.

6.1 Inventarisierung von Hochgebirgsseen

Das erstellte Seeninventar enthält Informationen von 1045 Hochgebirgsseen, basierend auf Google Earth Bildern (Stand von 2000 bis 2007). Um die Charakteristiken des Untersuchungsgebiets zu erkennen, wurden die Verteilung der Seetypen nach Seegröße, Höhenlage und geografischer Lage dargestellt. Des Weiteren wurden wichtige Eigenschaften, wie der Bezug zu bestehenden Gletschern, die Abflussverhältnisse und die Lage in Permafrostregionen gesammelt. Das Alter der Datengrundlagen von 8 bis 15 Jahren ist relativ hoch, birgt aber eine Möglichkeit: Sobald aktuelle Daten vorliegen, kann erneut ein Inventar erstellt und die Veränderung quantifiziert werden.

6.2 Analyse der Entwicklung ausgewählter Seen

Mit Hilfe einer Serie historischer Luftbilder von 1954 an konnte die Entstehung und Entwicklung von ausgewählten Gletscherseen dargelegt werden. Dafür wurden fünf Gletscherseen bzw. Seekomplexe aus dem Inventar ausgewählt, welche sich im dämmenden Material und im Entwicklungsstadium unterscheiden. Aus der Analyse ließen sich drei Hauptphasen in der Entwicklung von Gletscherseen unterscheiden. Die proglaziale Phase, gekennzeichnet von Wachstum und hoher Suszeptibilität, wird von der periglazialen Stabilisierungsphase abgelöst, auf die das gänzliche Entkoppeln vom Gletschereinfluss folgt. Die Erkenntnis, dass die Ausbruchgefahr am Ende der ersten Phase ein Maximum erreicht, verdeutlicht folgendes: Speziell im Wachstumsstadium sollten Seen entdeckt und beobachtet werden. Dadurch können erforderliche Schutzmaßnahmen rechtzeitig bemessen und umgesetzt werden.

6.3 Beurteilung des Gefahrenpotentials

Das Programm r.glof ermöglicht mit wenigen Eingangsdaten, über ein großes Gebiet, das Gefahrenpotential von Gletscherseeausbrüche abzuschätzen. Damit konnten Seen, von denen tendenziell eine höhere Gefahr ausgeht identifiziert werden. Durch die exemplarische Erläuterung von Ergebnissen relevanter Seen kann nachvollzogen werden worauf die Berechnung basiert. Zusätzlich zeigt sich, ob die Gefahreneinstufung auf mögliche Massenbewegungen aus dem Einzugsgebiet oder ein instabiles Dammmaterial zurückzuführen ist. Diese Erkenntnis kann wegweisend für Folgeuntersuchungen sein, da Schwachstellen schneller augefunden werden können. Trotzdem ist festzuhalten, dass die Gefahrenbeurteilung mit r.glof auf einer groben Berchnung basiert und für die als gefährlich eingestuften Seen Detailuntersuchungen notwendig sind. Demnächst wird es möglich sein mit einer neuen Version von r.glof eine Neuberechnung

durchzuführen, wobei mit einer verbessterten Erfassung der Auslauffläche gerechnet werden kann. Nichtsdestotrotz sind großmaßstäbige Modellierungen erforderlich, um das Risiko für Menschen, Bauwerke und Nutzlfächen einzuschätzen.

Allgemein lassen die Ergebnisse darauf schließen, dass aus momentaner Untersuchungsgebiet nur ein See als hoch gefährlich zu betrachten ist. Eine eingeschränkte Bedrohung geht von 20 bis 50 weiteren Seen aus. Das Risiko durch Lawinen, Muren, Felsstürze oder andere Massenbewegungen ist in den österreichischen Alpen höher anzusetzen, darum wird aktiv an dessen Minimierung gearbeitet. Für eine gesonderte Behandlung der Gletschergefahren wäre der Arbeitsaufwand enorm. Da sich das Entstehungsgebiet mit dem verschiedener anderer Naturgefahren deckt, und zusätzlich die Gletscherentwicklung beobachtet wird, sollte das Monitoring von Gletscherseen trotzdem mit aufgenommen werden. Momentan befinden sich nur wenige Seen im pro- oder periglazialen Stadium, welche durch starken Gletschereinfluss und hohe Ausbruchgefahr geprägt sind. Ein Monitoringprogramm sollte so organisiert werden, dass einerseits die Entwicklung dieser aufgefundenen frischen Seen beobachtet wird, und andererseits zukünftig entstehende Seen identifiziert werden. Damit kann das Erkennen von gefährlichen Seen sichergestellt werden. Um die Auswirkungen von Seeausbrüchen zu erfassen sind Modellrechnungen notwendig, welche den Bewegungsablauf der Flut auf physikalischer Basis nachstellen (Überprüfung der Anwendbarkeit von den Programmen Flow-2D und RAMMS für Gletscherseeausbrüche findet man in (Mergili et al., 2011)) und sozioökonomische Aspekte berücksichtigen. Mit den genannten Erweiterungen des Naturgefahren-Managements können in Zukunft bei der Anordnung von Schutzmaßnahmen auch die Gefahren ausgehend von Gletscherseen berücksichtigt werden.

7 Literaturverzeichnis

Abermann, J.; Kuhn, M.; Lambrecht, A.; Hartl, L. (2013): Gletscher in Tirol, ihre Verteilung und jüngste Veränderung. In: Koch, E.; Erschbamer B. (Hg.): Klima, Wetter, Gletscher im Wandel. Band 3. Innsbruck University Press, S. 49–67.

Ames, A. (1998): A dokumentation of glacier tounge variations and lake development in the Cordillera Blanca, Peru. Zeitschrift für Gletscherkunde und Glazialgeologie (34), S. 1–36.

Amt der Tiroler Landesregierung (2010): Operationelles Programm zur Stärkung der regionalen Wettbewerbsfähigkeit Tirols.

Breien, H. (2008): Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides (5), S. 271–280.

Carey, M. (2011): An integrated socio-environmental framework for glacial hazard management and climate change, adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change (112), S. 733–767.

Clague, J. J.; Evans, S. G. (2000): A review of caastrophic drainage of morain-dammed lakes in British Columbia. Quarternary Science Reviews (19), S. 1763–1783.

Clarke, G. K. C. (1982): Glacier outburst floods from "Hazard Lake" Yukon Territory, and problem of flood magnitude prediction. Journal of Glaciology (28), S. 3–21.

Copland, L.; Sylvestre, T.; Bishop, M. P.; Shroder, J. F.; Seong, Y. B.; Owen, L. A. et al. (2011): Expanded and Recently Increased Glacier Surging in the Karakoram. Arctic, Antarctic, and Alpine Research 43 (4), S. 503–516.

Ebohon, B. (2007): Modellierung der Permafrostverbreitung in Österreich. Diplomarbeit. Universität Wien.

Emmer, A.; Cochanchin, A. (2013): The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, Northamerica and, Himalayas. AUC Geographica (48), S. 5–15.

Emmer, A.; Merkl, S.; Mergili, M. (eingereicht): Recent evolution of (pro)glacial lakes in Tirol (Austia) and long-term behavioral patterns. Geomorphology.

Fischer, A.; Hartl, L. (2013): Langzeitmonitoring von Glestschermassenbilanzen und - längenänderungen in Tirol. In: Koch, E.; Erschbamer B.(Hg.): Klima, Wetter, Gletscher im Wandel. Band 3. Innsbruck University Press, S. 31–48.

Flubacher, M. (2007): Dokumentation weltweiter historischer Gletscherkatastrophen, GIS-basierte Inventarisierung, Web-Aufbereitung und Analyse der Ereignisse. Diplomarbeit. Universität Zürich.

Frey, H. (2011): Compilation and Applications of Glacier Inventories using Satellite Data and Digital Terrain Information. Dissertation. Universität Zürich.

Geilhausen, M.; Wiesenegger, H.; Slupetzky, H.; Seitlinger, G.; Kum G. (2012): Past, present & potential future dynamics of recently developed proglacial lakes - examples from the Hohe Tauern Mountain Range (Austria). Hg. v. EGU General Assembly (Vol. 14, EGU2012-12656-1).

Geographie Innsbruck - Tirol Atlas. Mittlerer Jahresniederschlag 1961-1990; Gletscherinventar. Online verfügbar unter tirolatlas.uibk.ac.at.

Geologische Bundesanstalt. Geologische Übersichtskarte der Republik Österreich (1999). Online verfügbar unter www.geologie.ac.at.

Glacio Risk (2003): Survey and prevention of extreme glaciological hazards in European mountainous regions. Online verfügbar unter glaciorisk.grenoble.cemagref.fr.

Google Earth. Online verfügbar unter earth.google.de.

Gruber, F. E.; Mergili, M. (2013): Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS. Natural Hazards and Earth System Sciences 13 (11), S. 2779–2796.

Haeberli, W. (1975): Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch. Dissertation. Universität von Basel.

Haeberli, W. (2001): Prevention of outburst floods from periglacial lakes at Gruben Glacier, Valais, Swiss Alps. Journal of Glaciology (47(156)), S. 111–122.

Haeberli, W., Kääb, A., Mühll, D. V., & Teysseire, P. (2001): Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. Journal of Glaciology 47(156), 111-122.

Harrison, S. (2006): A glacial lake outburst flood associated with recent mountain glacier retreat, Patagonian Andes. Holocene (16), S. 611–620.

Hoffmann, D. (2013): Comparison of recent glacial lakes in the Bolivian Andes and Southern Alps of New Zealand, Differences and similarities. High Mountains Adaption Partnership.

Hoinkes, H. C. (1969): Surges of the Vernagtferner in the Ötztal Alps since 1599. Canadian Journal of Earth Sciences 6 (4), S. 853–861.

Hübl, J.; Bunza, G.; Hafner, K.; Klaus, W. (2003): Stumme Zeugen Katalog. In: Projektteam ETAlp (Hg.): ETAlp—Erosion, Transport in Alpinen Systemen (48); Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien.

Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; and Paul, F. (2002): Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal (39), S. 316–330.

ICIMOD (2011): Glacial Lakes and Glacial Lake Outburst Floods in Nepal. International Centre for Integrated Mountain Development, Kathmandu.

IPCC (Hg.) (2014): Climat Change, Synthesis Report. Unter Mitarbeit von The Core Writing Team, Rajendra K. Pachauri und Leo Meyer.

Jiskoot, H.; Murray, T.; Boyle, P. (2000): Controls on the distribution of surge-type glaciers in Svalbard. Journal of Glaciology (46/154), S. 412–422.

Kattelmann, R.; Watanabe, T. (1997): Draining Himalayan glacial lakes before they burst, Destructive Water: Water- Caused Natural Disasters, their Abatement and Control. Conference Anaheim, California, S. 337–343.

Kattelmann, R. (2003): Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard?. Natural Hazards (28), S. 145–154.

Kehl, H. (2008): Das zyklische Auftreten von Optima und Pessima im Holozän. TU Berlin. Online verfügbar unter lv-twk.oekosys.tu-berlin.de.

Kershaw, J. A. (2005): Geomporphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada. Processes and Landforms (30), S. 1–25.

Klug, R. (2006): Permafrostdegration in den Alpen. Studienarbeit. Martin-Luther Universität, Halle-Wittenberg.

Koehler, D. (2014): Die österreichischen Alpen ohne Gletscher - Eine GIS-Analyse zu den Auswirkungen des Klimawandels. Bachelorarbeit. Züricher Hochschule für angewandte Wissenschaften.

Köfgen, A. (2014): GIS-based topographic reconstruction and geotechnical modeling of the Köfels Rock Slide. Masterarbeit. Universität für Bodenkultur, Wien.

Krautblatter, M.; Hauck, M.; Hauck, C. (2012): Neue Forschungsansätze zur räumlichen und zeitlichen Dynamik des Gebirgspermafrostes und dessen Naturgefahrenpotentials. Polarforschung (81.1), S. 57–68.

Lambrecht, A.; Kuhn, M. (2007): Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Annals of Glaciology (46), S. 177–184.

Land Tirol. Klima; Bevölkerung. Online verfügbar unter www.tirol.gv.at.

Linsbauer, A. (2008). Modellierung von Gletscherbetten mit GIS. Diplomarbeit. Universität Zürich.

Lliboutry, L. (1977): Glaciological problems set by the control of dangerous laces in Cordillera Blanca, Peru, Historical failures of moranic dams, their causes and prevention. Journal of Glaciology (18(79)), S. 239–254.

MacDonald, K. I. (1989): Impacts of glacier-related landslides on the settlement at Hopar, Karakorum Himalaya. Annals of Glaciology (13), S. 185–188.

Meier, T. (2015): Naturereignisse in der Mittelalterarchäologie. Ludwig-Maximilians-Universität. München. In: Mitteilungen der Deutschen Gesellschaft für Archäologie des Mittelalters und der Neuzeit.

Mergili, M.; Kope, C.; Müllebner, B.; Schneider, J. F. (2012a): Changes of the cryosphere and related geohazards in the high-mountain areas of Tajikistan and Austria: a comparison. Geografiska Annaler: Series A, Physical Geography 94 (1), S. 79–96.

Mergili, M.; Müllebner, B.; Kopf, C.; Schneider, J. F. (2012b): Changes in the glacial and periglacial environment of the European Alps and the Central Asian mountains and their socio-economic implications: a comparison. na.

Mergili, M.; Müller J.P.; Schneider J.F. (2013): Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Global and Planetary Change (107), S. 13–24.

Mergili, M.; Schneider, D.; Worni, R.; Schneider J.F. (2011): Glacial lake outburst floods in the Pamir of Tajikistan: Challenges in prediction and modelling. 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment, S. 14–17.

Mergili, M.; Schneider, J. F. (2011): Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Natural Hazards and Earth System Sciences 11 (5), S. 1447–1462.

Michael, T.; Forster, F.; Coy, M. (Hg.) (2013): Diercke - Weltatlas Österreich. 4. Aufl. Braunschweig. Westermann Wien im Verlag E. Dorner.

Munari, M.; Dinale, R.; Oberschmied, C. (2007): Glaziologische Untersuchungen am Übeltalferner. Autonome Provinz Bozen Abteilung 26, Zivil- und Brandschutz. Poster. Bozen.

Nicolussi, K. (2013): Zur Geschichte des Vernagtferners, Gletschervorstöße und Seeausbrüche im vergangenen Jahrtausend. In: Koch, E; Erschbamer, B. (Hg.): Klima, Wetter, Gletscher im Wandel. Band 3. Innsbruck University Press. S 69 – 94.

O'Connor, J. E.; Hardison, J. H.; and Costa, J. E. (2001): Debris flows from failures of Neoglacial-Age moraine dams in the Three Sisters and Mount Jefferson wilderness areas. US Geological Survey Professional Paper (1606), S. 93 pp.

Oeggl, K. (2011): Klima und Besiedlung der Alpen im historischen Kontext. In: Guglielmo Scaramellini und Alice Giulia Dal Borgo (Hg.): Die Alpen im Wandel zwischen Risiken und Chancen. Changing Alps between risks and chances. Innsbruck University Press (Alpine Space - man & environment, 12), S. 43–54.

Ohmura, A. (2009): Completing the World Glacier Inventory. Annals of Glaciology (50(53)), S. 144–148.

Österreichische Stratigraphische Kommission (2004). Stratigraphische Tabelle von Österreich. Kommission für die paläontologische und stratigraphische Erforschung Österreichs.

Perla, R. I. (1980): Avalanche release, motion and impact. In: Colbeck, S. (Hg.): Dynamics of Snow and Ice Masses. New York: Academic Press, S. 397–462.

Petrakov, D. A.; Krylenko, I. V.; Chernomorets, S. S.; Tutubalina, O. V.; Krylenko I. N.; Sakhmina M. S.; (2007): Debris flow hazard of glacial lakes in the Central Caucasus. 4th Int. Conf. on Debris-Flow Hazards Mitigation. Chengdu, China. Rotterdam, Millpress.

Prey, S. (1980): Die Geologie Österreichs in ihrem heutigen geodynamischen Entwicklungsstand sowie die geologischen Bauteile und ihre Zusammenhänge. In: Geologische Bundesanstalt (Hg.): Der geologische Aufbau Österreichs. Wien, Springer, S. 81–118.

Reynolds, J. M.; McCall, G. J. H.; Laming D.C.J.; Scott, S. (1992): Geohazards, Natural and man-made. The identification and mitigation of glacier-related hazards: examples from the Cordillera Blanca, Peru. Netherlands, Springer.

Reynolds, J. M. (2003): Development of glacial hazard and risk minimisation protocols in rural environments, Guidelines for the management of glacial hazards and risks. Report No: R7816.

Richardson, S. D.; Reynolds, J. M. (2000): An overview of glacial hazards in the Himalayas. Quaternary International (65/66), S. 31–47.

Rossi, G.; Franchi, G.; Dinale, R.; Mallaun, C. (2006): Übeltalferner, Haushaltsjahr 2004/2005. Sonderdruck zum Klimareport Nr. 130. Glacier Report (03). Hydrographisches Amt Bozen.

Seitlinger, G. (1999): Neu entstandene natürliche Seen im Nationalpark Hohe Tauern-Salzburger Anteil. Diplomarbeit. Naturwissenschaftliche Fakultät der Universität Salzburg.

Slupetzky, H. (1997): Der "Keessee" beim Stubacher Sonnblickkees in der Granatspitzgruppe (Hohe Tauern) – Beobachtungen zur Entstehung eines neuen Sees. Salzburger Geografische Arbeiten (31), S. 165–183.

Statistik Austria. Bevölkerung. Online verfügbar unter www.statistik.at.

Stokes, C. R.; Popovnin, V.; Aleynikov, A.; Gurney, S. D.; Shahgedanova, M. (2007): Recent glacier retreat in the Caucasus Mountains, and associated increase in supraglacial debris cover and supra/proglacial lake development. Annals of Glaciology 46 (1), S. 195–203.

tirisMaps. Tiroler Rauminformationssystem. Online verfügbar unter portal.tirol.gv.at.

Vilímek, V. (2005): Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides (2), S. 107–115.

Voight, B. (1990): The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. Journal of Volcanology and Geothermal Research (44.3), S. 349–386.

Vuichard, D.; Zimmermann, M. (1987): The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal, cause and consequences. Mountain Research and Development (7), S. 91–110.

Walder, J.; Costa, J. (1996): Outburst floods from glacier-dammed lakes, The effect of mode of lake drainage on flood magnitude. Earth surface processes and landforms (21), S. 701–723.

Weggenmann, D. (2011): Gletscherseeausbrüche in der Cordillera Apolobamba (Bolivien): Analyse und Bewertung des Risikopotentials im Rahmen des Klimawandels. Diplomarbeit. Universität von Heidelberg.

Werder, M.A.; Bauder, A.; Funk, M.; Keusen, H.-R. (2010): Hazard assessment investigations in connection with the formation of a lake on the tongue of Unterer Grindelwaldgletscher, Bernese Alps, Switzerland. Natural Hazards and Earth System Science (10.2), S. 227–237

Wiesenegger, H.; Slupetzky, H.; Geilhausen, M. (2013): Formation of glacial lakes-a recent dynamic process in the Hohe Tauern National Park. 5th Symposium for Research in Protected Areas. Mittersill (821-828).

Zapata, M. L. (1984): Avalanchas y aluviones en la departamento de Ancash, Huaráz, Peru. Electroperú, S.A.

Zemp, M. (2006): Glaciers and Climate Change, Spatio-temporal Analysis of Glacier Fluctuations in the European Alps after 1850. Dissertation. Universität Zürich.

Zentralanstalt für Meteorologie und Geodynamik. Erdbeben. Online verfügbar unter www.zamg.ac.at.

Zryd, A. (2008): Eine kleine Geschichte der Gletscher, Die Alpengletscher im Klimawandel. Haupt.

8 Anhang

8.1 Legende und Datenbank des Seeninventars

Attributtabelle	Bedeutung	Definition
lake_ID	Seeidentifikationsnummer	identification number for the lake
name	Name mit Flusseinzugsgebiet	Name with river catchment included
area	Seeoberfläche	Surface area
х	X-Koordinaten des Seezentroid	x-coordinate of the lake centroid
у	Y-Koordinaten des Seezentroid	y-coordinate of the lake centroid
elevation	Höhenlage des Sees	Elevation of the lake surface
lake_mora	Seetyp - Moränendamm	lake type - moraine dam
lake_bedro	Seetyp - Felsdamm	lake type - bedrock dam
lake_iceda	Seetyp - Eisdamm	lake type - ice dam
lake_lands	Seetyp - Massenbewegungsdamm	lake type - landslide dam
lake_anthr	Seetyp - Anthropogender Damm	lake type - anthropogenic dam
gl_conta	Direkter Gletscherkontakt	direct glacier contact
gl_watsup	Gletscher-Schmelzwasser-Zufluss	glacial melting water supply
surf_runof	Oberflächiger Wasserabfluss	Surface water runoff
close_mora	Gletschernaher Moränendammsee	glacier close moraine dammed lake
close_bedr	Gletschernaher Felsdammsee	glacier close bedrock dammed lake
far_mora	Gletscherferner Moränendannsee	glacier far moraine dammed lake
far_bedr	Gletscherferner Felsdammsee	glacier far bedrock dammed lake
goea_year	Google Earth Bilddatum	date of the google earth image
OIN	Oberer Inn Einzugsgebiet	
OTZ	Ötztaler Ache Einzugsgebiet	
MEL	Melach Einzugsgebiet	
SIL	Sill Einzugsgebiet	
ZIL	Ziller Einzugsgebiet	
ISE	Isel Einzugsgebiet	

Tabelle 8.1 Legende für die Attributtabelle der Seen-Shp-Datei

		1		1	ı													
					_	ıra	dro	da	qs	hr	ct	dr	of	ora	_bedr	в		ar
⊆ ,	a				elevation	lake_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	pe_	far_mora	bedr	goea_year
lake ₋	name	area			leva	ake	lake_	ake_	lake	lake_	gl_cc	<u>></u>	surf_	lose	close	ar_r	far_t	oea
		О	×	>			ķ			19				٥		·	Ę	0.0
1	OIN_001	2414	629727	5205943	2712	2	8	0	0	0	0	0	0	0	1	0	0	2000
3	OIN_002 OIN 003	406 15470	629780 628642	5205586 5206338	2764 2559	10	10	0	0	0	0	0	0	0	0	0	0	2000
4	OIN_003	3135	627420	5206060	2629	2	8	0	0	0	0	0	2	0	0	0	1	2000
5	OIN_005	903	628139	5205700	2721	2	8	0	0	0	0	0	0	0	0	0	1	2000
6	OIN_006	2961	627977	5205626	2740	6	4	0	0	0	0	0	0	0	0	1	0	2000
7	OIN_007	2164	627960	5205445	2739	7	3	0	0	0	0	0	10	0	0	1	0	2000
8	OIN_008	1610	627584	5204871	2858	6	4	0	0	0	0	0	10	1	0	0	0	2000
9 10	OIN_009 OIN 010	2389 5270	626826 624522	5201931 5199280	2606 2401	8	2	0	0	0	0	0	<u>2</u>	0	0	0 1	0	2007
11	OIN 011	3400	625099	5199024	2610	4	6	0	0	0	0	0	0	0	1	0	0	2007
12	OIN_012	8574	622831	5192154	2672	2	8	0	0	0	0	0	0	0	1	0	0	2007
13	OIN_013	495	620814	5191912	2589	6	4	0	0	0	0	0	0	0	0	1	0	2007
14	OIN_014	650	620866	5191819	2595	6	4	0	0	0	0	0	0	0	0	1	0	2007
15 16	OIN_015 OIN 016	1494 899	618568 619897	5195487 5189690	2625 2645	8 10	0	0	0	0	0	0	5 0	1	0	0	0	2007
17	OIN_016 OIN 017	20720	619897	5189690	2555	8	2	0	0	0	0	0	0	1	0	0	0	2007
18	OIN_018	21351	619331	5189260	2588	8	2	0	0	0	0	0	0	1	0	0	0	2007
19	OIN_019	19990	630134	5204672	2584	0	10	0	0	0	0	0	10	0	0	0	1	2000
20	OIN_020	642	629800	5201650	2422	10	0	0	0	0	0	0	0	1	0	0	0	2000
21	OIN_021	435	629383	5201415	2677	0	10	0	0	0	0	0	0	0	0	0	1	2000
22 23	OIN_022 OIN 023	2267 1049	629496 629426	5201217 5201222	2610 2613	3	7	0	0	0	0	0	0	0	0	0	1	2000
24	OIN_023	1136	629113	5201222	2636	10	0	0	0	0	0	0	0	1	0	0	0	2000
25	OIN_025	1207	629638	5200883	2600	10	0	0	0	0	0	0	0	1	0	0	0	2000
26	OIN_026	4908	628788	5199927	2808	1	9	0	0	0	0	0	10	0	0	0	1	2007
27	OIN_027	1890	629139	5199730	2757	2	8	0	0	0	0	0	0	0	0	0	1	2000
28	OIN_028	394	629200 629146	5199781	2764	3	6 7	0	0	0	0	0	0	0	0	0	1	2000
29 30	OIN_029 OIN 030	21765 1131	629146	5199122 5198428	2611 2564	10	0	0	0	0	0	0	8	0	0	0 1	0	2000
31	OIN_031	8155	627214	5197333	2753	8	2	0	0	0	0	0	10	0	0	1	0	2007
32	OIN_032	1533	626997	5195980	2862	10	0	0	0	0	0	0	0	1	0	0	0	2007
33	OIN_033	16999	627860	5194846	2895	9	1	0	0	0	0	0	9	1	0	0	0	2007
34	OIN_034	10923	628187	5194738	2825	9	1	0	0	0	0	0	10	1	0	0	0	2007
35 36	OIN_035 OIN 036	2206 1983	627535 629074	5194347 5195318	3040 2857	2 0	10	0	0	0	0	0	0	0	1 0	0	0	2007 2000
37	OIN_037	1277	628563	5196523	2629	10	0	0	0	0	0	0	0	1	0	0	0	2007
38	OIN_038	1245	629672		2889	2	8	0	0	0	0	0	0	0	1	0	0	2000
39	OIN_039	441	630321	5195851	2580	10	0	0	0	0	0	0	0	0	0	1	0	2000
40	OIN_040	2791	631176		2289	6	4	0			0	0	2	0	0	1	0	2000
41 42	OIN_041 OIN 042	3512 5749	630846 627748		2423 2815	6 2	8	0	0	0	0	0	8	0	0	0	0	2003
43	OIN_042	6950	628561	5192501	2677	0	10	0		_	0	0	10	0	1	0	0	2007
44	OIN_044	5986	629659	5191884	2742	10	0	0	0	0	0	6	8	1	0	0	0	2003
45	OIN_045	26047	630509		2468	4	6	0			0	6	10	0	1	0	0	2003
46	OIN_046	644	630525	5192431	2469	4	6	0	0	0	0	0	0	0	1	0	0	2003
47 48	OIN_047 OIN 048	2308 1787	630494 634516		2750 2674	3	7	0	0	10	0	0	0 8	0	0	0	0	2003
48	OIN_048 OIN 049	1618	635312		2849	6	4	0		_	0	0	0	1	0	0	0	2003
50	OIN_050	6219	634527	5195117	2773	10	0	0	0	0	0	2	0	1	0	0	0	2000
51	OIN_051	613	634627	5195059	2784	10	0	0	0	_	0	10	0	1	0	0	0	2000
52	OIN_052	1919	635330	5195076		2	8	0			10	10	0	0	1	0	0	2000
53 54	OIN_053 OIN 054	2730 2002	634544		2511	10 1	9	0	0	_	0	0	0	1 0	0	0	0	2000
55	OIN_054 OIN 055	3237	635188 635171		2805 2930	1	9	0	0	0	0	0	10	0	0	0	1	2000
56	OIN_056	3228	634632		2748	2	8	0		_	0	0	0	0	1	0	0	2000
57	OIN_057	1805	635668	5206685		10	0	0	0	0	0	5	5	0	0	1	0	2000
58	OIN_058	95347	637070		2675	0	10	0	0		2	10	10	0	1	0	0	2000
59	OIN_059	3112	636411	5212665	2559	10	0	0	0	0	0	2	8	1	0	0	0	2000
60 61	OIN_060 OIN 061	579 9228	636270 632682	5213111 5218241	2554 2137	2 8	2	0	0		0	0	0	0	0	0	0	2000
62	OIN_061	2698	634256			2	8	0	0	_	0	0	10	0	0	0	1	2000
63	OIN_063	957	636012	5217370	2146	10	0	0		0	0	0	2	0	0	1	0	2000
64	OIN_064	13594	635996			10	0	0	0	0	0	0	6	0	0	1	0	2000
65	OIN_065	1745	635036			2	8	0			0	0	0	0	0	0	1	2000
66	OIN_066	32339	635211	5216237	2586	1	9	0	0	0	0	0	10	0	0	0	1	2000

		1		1	1							-						
					_	ra	dro	da	qs	hr	ct	dr	of	ora	_bedr	а		ar
⊆ ,	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	pe_	far_mora	bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake_	lake_	gl_cc	<u>></u>	surf	lose	close	ar_r	far_k	oea
			×	>		il.	19			19				٥		Ċ	4	0.0
67	OIN_067	9879	634879	5216412	2758	1	9	0	0	0	0	0	0	0	0	0	1	2000
68	OIN_068	1597	634787	5216358	2766	0	10	0	0	0	0	0	6	0	0	0	1	2000
69 70	OIN_069 OIN 070	1783 369	635151 634969	5215966 5216020	2655 2720	2	7 8	0	0	0	0	0	0 8	0	0	0	1	2000
70	OIN_070	794	635761	5215905	2720	2	8	0	0	0	0	0	0	0	0	0	1	2000
72	OIN_073	504	636301	5216376	2533	2	8	0	0	0	0	0	0	0	0	0	1	2000
73	OIN_074	590	636312	5215484	2697	2	8	0	0	0	0	0	0	0	0	0	1	2000
74	OIN_075	1123	636211	5215245	2638	8	2	0	0	0	0	0	0	0	0	1	0	2000
75 76	OIN_076	466	638967	5211337	2506	10	0	0	0	0	0	2	0	1	0	0	0	2000
76 77	OIN_077 OIN 078	408 772	640090 640040	5210761 5210723	2373 2371	1	9	0	0	0	0	0	0	0	0	0	1	2000
78	OIN 079	851	640101	5210723	2391	2	8	0	0	0	0	0	0	0	0	0	1	2000
79	OIN_080	4578	640203	5210671	2378	4	6	0	0	0	0	8	10	0	0	0	1	2000
80	OIN_081	819	638282	5208027	2709	7	0	3	0	0	0	2	0	1	0	0	0	2000
81	OIN_082	2759	638941	5207643	2506	3	7	0	0	0	0	2	1	0	0	0	1	2000
82	OIN_083	26695	639358	5206943	2455	1	9	0	0	0	0	8	1	0	0	0	1	2000
83 84	OIN_084 OIN 085	722 2112	639543 636861	5206887 5206790	2468 3019	2 10	8	0	0	0	0	2	0	0 1	0	0	0	2000
85	OIN_086	2411	638960	5206790	2661	6	4	0	0	0	0	0	0	0	0	1	0	2000
86	OIN_087	272137	640592	5203018	2233	4	6	0	0	0	0	10	10	0	0	0	1	2000
87	OIN_088	3421	639953	5202502	2481	9	1	0	0	0	0	0	0	0	0	1	0	2000
88	OIN_089	668	637852	5202278	2728	8	2	0	0	0	0	0	0	1	0	0	0	2000
89	OIN_090	1129	637418	5201926	2809	10	0	0	0	0	0	3	0	1	0	0	0	2000
90 91	OIN_091 OIN 092	6895 1099	636382 636366	5201119 5201034	2949 2953	3	7 7	0	0	0	0	10 2	10	0	1	0	0	2000
92	OIN_092	616	637525	5201034	2768	10	0	0	0	0	0	0	0	1	0	0	0	2000
93	OIN_094	528	637564	5200256	2765	10	0	0	0	0	0	0	0	1	0	0	0	2000
94	OIN_095	1573	637850	5200440	2723	10	0	0	0	0	0	0	0	1	0	0	0	2000
95	OIN_096	5815	637254	5198903	2821	8	0	2	0	0	0	1	0	1	0	0	0	2000
96	OIN_097	2239	636995	5198124	2813	8	1	1	0	0	4	10	10	1	0	0	0	2000
97 98	OIN_098 OIN 099	3743 4007	635929 643170	5195354 5198679	2850 2837	10 0	0	0	0	10	0	2	0	0	0	0	0	2000
99	OIN 100	7254	643108	5198592	2831	0	0	0	0	10	0	4	2	0	0	0	0	2000
100	OIN_101	10706	643220	5198018	2779	0	0	0	0	10	0	6	0	0	0	0	0	2000
101	OIN_102	764	645449	5199775	2735	6	4	0	0	0	0	0	2	1	0	0	0	2000
102	OIN_103	14152	644132	5205859	2527	10	0	0	0	0	0	1	0	1	0	0	0	2000
103	OIN_104	2839	644901	5207244	3233	2	8	0	0	0	3	3	0	0	1	0	0	2000
104 105	OIN_105 OIN 106	1826 19974	645456 643217	5208938 5210914	3198 2545	1	6 9	0	0	0	0	0	3	0	0	0	1	2000
106	OIN 107	4058	642082	5214884	2472	2	8	0	0	_	0	0	10		0	0	1	2000
107	OIN_108	42162	642676	5215466	2771	0	10	0	0	0	0	0	10	0	0	0	1	2000
108	OIN_109	625	642293	5215708	2762	2	8	0	0		0	0	0	0	0	0	1	2000
109	OIN_110	331	642607	5215794	2873	2	8	0	0	_	0	0	0	0	0	0	1	2000
110 111	OIN_111 OIN 112	5284 459	642701 642751	5215966 5216060	2898 2915	7	10 3	0	0		0	0	10	0	0	0	0	2000
111	OIN_112 OIN 113	504	642503	5215060	2859	3	7	0	0	0	0	0	0	0	0	0	1	2000
113	OIN_114	3426	642298		2797	0	10	0	0	_	0	0	6	0	0	0	1	2000
114	OIN_115	2128	641868	5216481	2582	8	2	0	0	0	0	0	0	0	0	1	0	2000
115	OIN_116	1744	641883	5216558	2579	8	2	0	0		0	0	0		0	1	0	2000
116	OIN_117	11158	641785	5216664	2577	6	4	0	0		0	0	1	0	0	1	0	2000
117 118	OIN_118 OIN 119	988 6276	641784 637918	5216902 5221727	2653 2592	8	10	0	0	_	0	0	10	0	0	0	0	2000
119	OIN_119	683	637496	5221727	2571	8	2	0	0		0	0	10	0	0	1	0	2000
120	OIN_121	1738	638305	5221848	2795	2	8	0	0	_	0	0	0	0	0	0	1	2000
121	OIN_122	502	637923	5221885	2581	0	10	0	0	0	0	0	10	0	0	0	1	2000
122	OIN_123	319	637669		2492	0	10	0	0		0	0	10	0	0	0	1	2000
123	OIN_124	10634	637328	5222141	2429	4	6	0	0	0	0	0	10	0	0	0	1	2000
124 125	OIN_125 OIN 126	3059 7486	637551 635329	5223507 5224767	2218 2357	8	2 0	0	0		0	0	0	0	0	0	0	2000
126	OIN_120	1749	637835	5224707	2491	0	10	0	0		0	0	10	0	1	0	0	2000
127	OIN_128	1436	629502	5203950	2574	10	0	0	0		0	0	0		0	1	0	2007
128	OIN_129	7167	639998	5210359	2411	9	1	0	0	0	0	5	4	1	0	0	0	2000
129	OIN_130	3793	640942	5196410	2976	3	7	0	0	0	0	0	6	0	1	0	0	2000
130	OIN_131	1307	641073	5196711	3038	7	3	0	0	0	0	0	0	1	0	0	0	2000
131 132	OTZ_001 OTZ 002	484 293	640549 639968	5225403 5224916	2356 2451	10 10	0	0	0		0	0	0	0	0	1	0	2000
132	014_004	293	033308	3424310	2431	10	U	U	U	U	U	U	U	U	U	1	U	2000

		1		Ī				ī				1		1 1	r	1		
					_	ra	Iro	Ja	qs	hr	ct	dı	of	ora	dr	σ.		ar
≘ੂ	a				elevation	ake_mora	ake_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	surf_runof	close_mora	close_bedr	far_mora	bedr	goea_year
lake_	name	area			leva	ake_	ake_	ake_	lake_	lake_	oj_lg	<u>></u>	urf,	lose	lose	ar_r	far_t	oea
			×	>												·		
133	OTZ_003	1259	640115	5224833	2389	10	0	0	0	0	0	0	10	0	0	1	0	2000
134 135	OTZ_004 OTZ 005	1214 8934	639772 639480	5224455 5224321	2455 2476	10 10	0	0	0	0	0	0	10 4	0	0	1	0	2000
136	OTZ_003	456	639342	5224321	2486	10	0	0	0	0	0	0	0	0	0	1	0	2000
137	OTZ_007	2163	639343	5224075	2503	10	0	0	0	0	0	0	0	0	0	1	0	2000
138	OTZ_008	454	639058	5223701	2586	10	0	0	0	0	0	0	0	0	0	1	0	2000
139	OTZ_009	1093	639598	5224274	2472	10	0	0	0	0	0	0	10	0	0	1	0	2000
140 141	OTZ_010	1223 2212	639684 640150	5224135	2462 2353	10	0	0	0	0	0	0	10	0	0	1	0	2000
141	OTZ_011 OTZ 012	2199	641053	5224071 5224395	2363	10	0	0	0	0	0	0	10 6	0	0	1	0	2000
143	OTZ_013	4445	640972	5224039	2512	0	10	0	0	0	0	0	2	0	0	0	1	2000
144	OTZ_014	936	642254	5225168	2210	8	2	0	0	0	0	0	10	0	0	1	0	2000
145	OTZ_015	49055	639768	5222770	2557	0	10	0	0	0	0	0	2	0	0	0	1	2000
146	OTZ_016	735	639909	5222857	2556	0	10	0	0	0	0	0	2	0	0	0	1	2000
147 148	OTZ_017 OTZ 018	353 564	639428 639175	5222711 5222756	2636 2703	0	10	0	0	0	0	0	0	0	0	0	1	2000
149	OTZ_018	1312	638993	5222730	2621	10	0	0	0	0	0	0	4	0	0	1	0	2000
150	OTZ_020	919	639763	5222011	2426	10	0	0	0	0	0	0	0	0	0	1	0	2000
151	OTZ_021	5861	639368	5221417	2460	10	0	0	0	0	0	0	0	0	0	1	0	2000
152	OTZ_022	1869	640886	5220484	2418	4	6	0	0	0	0	0	0	0	0	0	1	2000
153 154	OTZ_023 OTZ_024	7729 1012	640337 640160	5220128 5220180	2416 2410	10 10	0	0	0	0	0	0	0	0	0	1	0	2000
155	OTZ 025	1227	640469	5219692	2557	10	0	0	0	0	0	0	0	0	0	1	0	2000
156	OTZ_026	9350	641372	5218312	2853	2	8	0	0	0	0	0	0	0	0	0	1	2000
157	OTZ_027	3200	643836	5216702	2642	2	8	0	0	0	0	0	0	0	0	0	1	2000
158	OTZ_028	542	643886	5216896	2636	2	8	0	0	0	0	0	0	0	0	0	1	2000
159 160	OTZ_029 OTZ_030	316 5346	643986 644803	5216736 5216041	2671 2519	2	10 8	0	0	0	0	0	10	0	0	0	1	2000
161	OTZ_030	16014	644261	5215607	2541	2	8	0	0	0	0	0	10	0	0	0	1	2000
162	OTZ_032	7086	644933	5213565	2413	0	10	0	0	0	0	0	0	0	0	0	1	2000
163	OTZ_033	2741	645284	5213743	2369	2	8	0	0	0	0	0	0	0	0	0	1	2000
164	OTZ_034	2373	645590	5213151	2389	10	0	0	0	0	0	10	10	1	0	0	0	2000
165 166	OTZ_035 OTZ_036	12948 435	645637 645389	5213324 5212416	2382 2721	0 2	10 8	0	0	0	0	10 10	10 10	0	0	0	0	2000
167	OTZ_030	7835	644975	5211354	2598	2	8	0	0	0	0	0	0	0	0	0	1	2000
168	OTZ_038	532	644160	5210776	2727	6	4	0	0	0	0	0	0	0	0	1	0	2000
169	OTZ_039	367	646131	5208296	2958	0	10	0	0	0	0	10	10	0	1	0	0	2000
170	OTZ_040 OTZ_041	3045	648048	5208727	2476		10	0	0	0	0	0	0	0	0	0	0	2000
171 172	OTZ_041	2887 335	648589 645648	5208807 5206040	2357 2838	3	10 7	0			0	0	0	0	0	0		2000
173	OTZ 043	481	645681	5205752	2764	10	0	0	0	0	0	0	10	1	0	0	0	2000
174	OTZ_044	1066	646332	5205384	2606	10	0	0	0	0	0	0	0	1	0	0	0	2000
175	OTZ_045	710	646365	5205408	2594	10	0	0	0		0	0	0	1	0	0	0	2000
176 177	OTZ_046 OTZ_047	467 878	646373 645713	5204816 5202964	2671 2771	10	2	0	0		0	0	0	0	0	1	0	2000
177	OTZ_047	1637	646942	5202964	2808	10 2	0 8	0	0	0	0	0	0	0	1	0	0	2000
179	OTZ_049	42682	648055		2798	4	6	0	0	_	0	0	0	0	1	0	0	2000
180	OTZ_050	8917	650410	5207326	2466	2	8	0	0	0	0	10	0	0	0	0	1	2000
181	OTZ_051	1892	649150		2556	10	0	0	0		0	0	0	0	0	1	0	2000
182 183	OTZ_052 OTZ_053	370 273	648707 648801	5203108 5203075	2628 2612	10	0	0	0		0	0	0	0	0	1 0	0	2000
183	OTZ_053	1205	647340	5203075	2654	7	3	0	0		0	10	10	1	0	0	0	2000
185	OTZ_055	1049	647399	5200451	2658	7	3	0	0		0	10	10	1	0	0	0	2000
186	OTZ_056	1602	647470		2659	7	3	0	0		0	10	10	1	0	0	0	2000
187	OTZ_057	4223	647549	5200476	2655	7	3	0	0	0	0	10	10	1	0	0	0	2000
188 189	OTZ_058 OTZ 059	5351 37234	647826 649669	5200559 5199930	2636 2703	7	3	0	0	0	0	10	10	0	0	0	0	2000
189	OTZ_060	37234 2533	649184		2809	2	8	0	0	_	0	0	0	0	0	0	1	2000
191	OTZ_061	1759	647876	5198543	2832	0	0	0	0		0	0	0	0	0	0	0	2000
192	OTZ_062	1870	647283	5197750	2937	0	10	0	0		10	10	0	0	1	0	0	2000
193	OTZ_063	964	647479		2911	2	8	0	0		0	10	0	0	1	0	0	2000
194 195	OTZ_065 OTZ 066	1437 2476	646341 643941	5195329 5192943	2737	10 10	0	0	0	0	0	2 10	10 10	1	0	0	0	2000
195	OTZ_066	1686	642636	5192943	2809 2913	10	0	0	0	0	0	0	0	1	0	0	0	2000
197	OTZ_068	1648	640234		3085	4	6	0	0		0	0	0	0	1	0	0	2003
198	OTZ_069	501	639658	5191698	2923	0	10	0	0	0	0	0	0	0	1	0	0	2003

		1	1	1	I										ı			
					_	ra	dro	da	qs	hr	ct	dr	of	ora	gdr	а		ar
\Box	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	_bedr	far_mora	bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake_	lake_	oj_lg	> _	surf_	lose	close_	ar_r	far_t	oea
10	2	В	×	>	Φ	21	19	li	li	lš	60	80	S)	S	Ę	Ę	6.0
199	OTZ_070	336	638929	5193450	3061	0	0	10	0	0	10	10	10	0	0	0	0	2003
200	OTZ_071	1738	640110	5191459	2952	0	10	0	0	0	0	0	0	0	1	0	0	2003
201	OTZ_072 OTZ 073	352 913	637910 639412	5189909 5188266	2911 2908	10 6	0	0	0	0	0	0	10	0	0	0 1	0	2003
202	OTZ 074	2528	637793	5184586	2908	3	7	0	0	0	0	0	10	0	1	0	0	2003
204	OTZ_074	4906	636571	5183664	3117	3	7	0	0	0	0	0	10	0	1	0	0	2003
205	OTZ_076	1933	636361	5183634	3145	3	7	0	0	0	0	0	10	0	1	0	0	2003
206	OTZ_077	10512	637425	5182963	2766	3	7	0	0	0	10	10	10	0	1	0	0	2003
207	OTZ_078	3178	639447	5183828	2898	8	2	0	0	0	5	10	10	1	0	0	0	2003
208	OTZ_079	1410	638680	5184099	2659	10	0	0	0	0	0	0	6	1	0	0	0	2003
209	OTZ_080	383	640730	5186012	2858	10	0	0	0	0	0	8	10	1	0	0	0	2000
210 211	OTZ_081 OTZ_082	2340 431	641123 641275	5186316 5186368	2862 2876	10 10	0	0	0	0	0	10	10 2	1	0	0	0	2000
212	OTZ_082	7474	643024	5185365	2923	2	8	0	0	0	0	0	10	0	0	0	1	2000
213	OTZ 084	701	647533	5188729	2894	1	9	0	0	0	0	0	0	0	0	0	1	2000
214	OTZ_085	760	649169	5191629	2846	10	0	0	0	0	0	6	4	1	0	0	0	2000
215	OTZ_086	696	650657	5193653	2744	10	0	0	0	0	0	0	10	1	0	0	0	2000
216	OTZ_087	6695	654107	5196976	2440	8	2	0	0	0	0	0	4	0	0	1	0	2000
217	OTZ_088	7680	653124	5194901	2672	2	8	0	0	0	0	0	10	0	0	0	1	2000
218	OTZ_089	582 1070	653061	5194642	2680	10	8	0	0	0	0	0	8	0	0	0	1	2000
219 220	OTZ_090 OTZ 091	1970 3480	653555 653668	5194825 5194499	2612 2562	10 9	1	0	0	0	0	0	0 8	0	0	1	0	2000
220	OTZ_091	978	653571	5194499	2563	9	1	0	0	0	0	0	10	0	0	1	0	2000
222	OTZ 093	25336	651931	5193429	2879	7	3	0	0	0	0	0	0	1	0	0	0	2000
223	OTZ_094	2723	652239	5193092	2758	2	6	2	0	0	0	0	4	0	1	0	0	2000
224	OTZ_095	1504	652350	5192934	2741	0	10	0	0	0	0	0	10	0	1	0	0	2000
225	OTZ_096	843	649972	5187736	3004	2	8	0	0	0	0	0	0	0	1	0	0	2000
226	OTZ_097	1051	649897	5187242	2935	0	10	0	0	0	0	10	10	0	1	0	0	2000
227	OTZ_098	416	649857	5187012	2944	0	10	0	0	0	0	10	10	0	1	0	0	2000
228 229	OTZ_099 OTZ 100	510 1048	649861 649860	5186869 5186752	2945 2945	0	10	0	0	0	0	10	10	0	1	0	0	2000
230	OTZ 101	2661	652492	5184351	2945	10	0	0	0	0	0	6	10	1	0	0	0	2000
231	OTZ 102	8267	651218	5185460	2753	2	2	6	0	0	10	10	10	0	0	0	0	2000
232	OTZ_103	2373	651501	5188553	2247	0	10	0	0	0	0	4	10	0	0	0	1	2000
233	OTZ_104	1317	651595	5188613	2213	0	10	0	0	0	0	0	0	0	0	0	1	2000
234	OTZ_105	2199	654560	5183983	2859	6	4	0	0	0	0	0	0	1	0	0	0	2000
235	OTZ_106	2322	654408	5185070	2928	0	10	0	0	0	0	10	10	0	1	0	0	2000
236	OTZ_107 OTZ 108	411	654205	5186008	2953		0	0	0	0	0 5	-	10		0	0	0	2000
237 238	OTZ_108	817 1249	654345 654340	5186181 5186641	2987 3015	8 2	2 8	0	0		0	10	10 6	0	1	0	0	2000
239	OTZ_103	2197	654274	5186740	3015	2	8	0	0	0	0	10	10	0	1	0	0	2000
240	OTZ 111	539	653614	5187840	2877	10	0	0	0		0	0	8	1	0	0	0	2000
241	OTZ_112	1672	654552	5188523	2746	10	0	0	0	0	0	10	10	1	0	0	0	2000
242	OTZ_113	588	656942	5190466	2725	10	0	0	0		0	0	4	1	0	0	0	2000
243	OTZ_114	489	658237	5192146	2729	10	0	0	0		0	0	4	1	0	0	0	2000
244	OTZ_115	472	658276	5192222	2723	10	0	0	0	0	0	0	10	0	0	1	0	2000
245 246	OTZ_116 OTZ 117	1494 4687	658681 658339	5193314 5193518	2777 2711	10	0 6	0	0	0	0	0	10	0	0	0	0	2000
246	OTZ 118	1044	658042	5193518	2658	4	6	0	0		0	0	10		0	0	1	2000
248	OTZ_119	5038	658502	5193747	2786	2	8	0	0		0	0	0	0	0	0	1	2000
249	OTZ_120	15848	658127	5194548	2719	0	0	0	0	10	0	0	0	0	0	0	0	2000
250	OTZ_121	1733	658781	5194221	2946	2	8	0	0		0	0	0	0	1	0	0	2000
251	OTZ_122	459	658535	5195276	2835	10	0	0	0	_	0	0	0		0	0	0	2000
252	OTZ_123	2502	659723	5195902	2536	0	10	0	0		0	8	0		0	0	1	2000
253 254	OTZ_124 OTZ 125	320 3747	659822	5195942 5196234	2545	0	10	0	0	0	0	0	0	0	0	0	1	2000
254	OTZ_125	3747 1096	659795 659682	5196234 5196515	2518 2470	3 6	7	0	0	0	0	0	8	0	0	1	0	2000
256	OTZ_120	2785	660111	5198355	2681	10	0	0	0	_	0	0	10	0	0	1	0	2000
257	OTZ_128	5023	659832	5198256	2643	10	0	0	0	0	0	0	10	0	0	1	0	2000
258	OTZ_129	754	659862	5198592	2725	2	8	0	0		0	0	0		0	0	1	2000
259	OTZ_130	729	658698	5198844	2621	10	0	0	0	0	0	0	0	1	0	0	0	2000
260	OTZ_131	8073	659974	5199229	2926	10	0	0	0		0	0	0	1	0	0	0	2000
261	OTZ_132	9409	659795	5199322	2915	10	0	0	0	0	0	0	2	1	0	0	0	2000
262	OTZ_133	1383	659472 658143	5199274	2883	0	10	0	0	0	0	0	10	0	1	0	0	2000
263 264	OTZ_135 OTZ_136	2115 1364	658143	5199465 5199830	2704 2760	0	10	0	0		0	0	10	0	0	0	1	2000
∠04	012_130	1304	028126	2133930	2/00	U	ΤÜ	U	U	U	U	U	ΤÜ	U	U	U	T	2000

		<u> </u>		Ī								ī			ī		1	
					_	ra	dro	da	qs	hr	ct	dr	of	ora	gdr	а		ar
\Box	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	_runof	close_mora	_bedr	far_mora	_bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake	lake_	gl_cc	<u>></u>	surf_	lose	close_	ar_r	far_t	oea
			×	>		il.	Iè						S	٥		·	Ę	0.0
265	OTZ_137	496	658226	5199813	2768	0	10	0	0	0	0	0	1	0	0	0	1	2000
266 267	OTZ_138 OTZ 139	357 42920	657565 657852	5200197 5200918	2785 2641	10	0 8	0	0	0	0	0	10	0	0	0	0	2000
268	OTZ 140	1830	658285	5200918	2559	1	9	0	0	0	0	0	10	0	0	0	1	2000
269	OTZ_141	1061	659023	5200666	2787	10	0	0	0	0	0	0	0	1	0	0	0	2000
270	OTZ_142	792	659201	5200642	2767	10	0	0	0	0	0	0	0	1	0	0	0	2000
271	OTZ_143	2407	659383	5199787	2784	10	0	0	0	0	0	0	0	1	0	0	0	2000
272	OTZ_144	3978	659358	5199961	2784	10	0	0	0	0	0	0	0	1	0	0	0	2000
273 274	OTZ_146 OTZ 147	2489 7148	659817 660184	5200464 5200311	2683 2671	1	9	0	0	0	0	0	0	0	0	0	1	2000
275	OTZ 148	1573	660557	5199794	2881	3	7	0	0	0	2	5	10	0	1	0	0	2000
276	OTZ_149	6735	663108	5200464	2596	9	1	0	0	0	0	0	9	1	0	0	0	2002
277	OTZ_150	3058	663674	5201094	2799	3	7	0	0	0	0	0	0	0	1	0	0	2000
278	OTZ_151	29978	662444	5201942	2690	10	0	0	0	0	0	3	3	1	0	0	0	2000
279 280	OTZ_152 OTZ 153	520 4800	661804 661255	5203294 5203673	2824 2868	0	9 10	0	0	0	0	3	0 8	0	1	0	0	2000
281	OTZ 154	2162	660882	5203673	2923	0	10	0	0	0	0	0	4	0	0	0	1	2000
282	OTZ_155	1128	660140	5204943	3116	3	7	0	0	0	0	0	0	0	1	0	0	2000
283	OTZ_157	24208	657377	5204137	2655	10	0	0	0	0	0	0	8	0	0	1	0	2000
284	OTZ_158	5414	657334	5204541	2828	0	10	0	0	0	0	0	10	0	0	0	1	2000
285 286	OTZ_159 OTZ 160	5630 512	656228 656278	5205342 5205470	2733 2733	1	9	0	0	0	0	0	10	0	0	0	1	2000
287	OTZ 161	1706	656202	5205470	2733	0	10	0	0	0	0	0	0	0	0	0	1	2000
288	OTZ_161	745	656173	5205703	2811	0	10	0	0	0	0	0	4	0	0	0	1	2000
289	OTZ_163	4222	655949	5205217	2739	4	6	0	0	0	0	0	0	0	0	0	1	2000
290	OTZ_164	14357	655770	5204967	2678	0	10	0	0	0	0	0	10	0	0	0	1	2000
291	OTZ_165	3559	657430	5206177	3091	2	8	0	0	0	5	5	0	0	1	0	0	2000
292 293	OTZ_166 OTZ 167	17768 721	653016 655543	5213118 5211380	2360 2534	7	3 7	0	0	0	0	0	6 0	0	0	1 0	0	2000
294	OTZ_167	810	657512	5211904	2141	6	4	0	0	0	0	0	0	0	0	1	0	2000
295	OTZ_169	697	655190	5209837	2832	8	2	0	0	0	0	2	0	1	0	0	0	2000
296	OTZ_170	683	656379	5209719	2676	10	0	0	0	0	0	0	0	1	0	0	0	2000
297	OTZ_171	2245	659161	5207416	3054	3	7	0	0	0	0	0	6	0	1	0	0	2000
298 299	OTZ_172 OTZ 173	657 1713	659145 659096	5208306 5208827	2979 2736	10	2 0	8	0	0	10	10	0	0	0	0	0	2000
300	OTZ_173	2072	660186	5211577	2857	3	7	0	0	0	0	10	0	0	1	0	0	2000
301	OTZ_175	2137	659292	5211039	2629	10	0	0	0	0	0	0	0	0	0	1	0	2000
302	OTZ_176	3718	659297	5215030	2879	9	1	0		0	0	0	0	1	0	0	0	2000
303	OTZ_177	1519	658580	5214247	2758	10	0	0	0	0	0	0	0	1	0	0	0	2000
304 305	OTZ_178 OTZ 179	2780 1288	658694 656971	5213953 5214659	2695 3006	10	0 2	0 8	0		10	0 10	2	0	0	0	0	2000
306	OTZ 180	19251	657512	5214039	2651	6	4	0	0		10	10	10	1	0	0	0	2000
307	OTZ_181	907	656613	5216711	2486	2	8	0	0		0	0	10	0	1	0	0	2000
308	OTZ_182	868	656602	5216962	2441	10	0	0	0		0	0	4	1	0	0	0	2000
309	OTZ_183	8399	655970	5217037	2361	2	8	0			0	0	10	0	0	0	1	2000
310 311	OTZ_184 OTZ 185	581 981	655952 654675	5217754 5218024	2437 2559	10 10	0	0	0	0	0	0	0	0	0	1	0	2000
311	OTZ_185	65755	651776		2539	3	7	0	0		0	10	10	0	0	0	1	2000
313	OTZ_187	2232	652593	5218889	2916	2	8	0	_		10	10	0	0	1	0	0	2000
314	OTZ_188	1049	652811	5220531	2363	10	0	0	0		0	0	0	0	0	1	0	2000
315	OTZ_189	1831	652927	5220999	2283	10	0	0	0		0	0	0	0	0	1	0	2000
316 317	OTZ_190 OTZ 191	1765 746	653018 654250	5221125 5226265	2285 2595	10 6	0	0	0		0	0	10	0	0	1	0	2000
318	OTZ_191	1031	654147	5226569	2661	4	6	0			0	0	10	0	0	0	1	2000
319	OTZ_193	3169	650190	5226057	2673	2	8	0	0	0	0	0	6	0	0	0	1	2000
320	OTZ_194	615	650266		2653	3	7	0			0	0	6	0	0	0	1	2000
321	OTZ_195	1951	649855	5225695	2721	10	0	0	0	0	0	0	8	1	0	0	0	2000
322	OTZ_196 OTZ_197	1853	649736 650153	5225725	2726	10	0	0	0		0	0	0	1 0	0	0	0	2000
323 324	OTZ_197	3099 3113	650225	5224045 5226446	2587 2525	0	9 10	0	0	0	0	0	10	0	0	0	1	2000
325	OTZ_199	8739	650350	5226351	2539	1	9	0			0	0	0	0	0	0	1	2000
326	OTZ_200	7165	651476		2525	8	2	0	0		0	0	10	0	0	1	0	2000
327	OTZ_201	1657	653197	5226939	2670	3	7	0		0	0	0	10	0	1	0	0	2000
328	OTZ_202 OTZ_203	1495	653294	5226970	2663	2	8	0	0	0	0	0	10	0	1	0	0	2000
329 330	OTZ_203	1161 333	654106 654122	5227094 5227229	2694 2675	3 2	7 8	0	0		0	0	0 4	0	1	0	0	2000
550	J14_4U4	333	054172	3221223	2073		U	U	U	U	U	U	-	U	1	U	U	_000

		1		1	1													
					_	ra	dro	da	qs	hr	ಕ	dr	of	ora	gdr	а		ar
⊆ੂ	a				elevation	lake_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	_runof	close_mora	_bedr	far_mora	bedr	goea_year
lake_	name	area			leva	ake	lake_	ake_	lake_	lake_	g c	<u>></u>	surf_	lose	close	ar_r	far_t	oea
			×	>			19		ļ					٥		·	Ę	0.0
331	OTZ_207	997989	653449	5228604	2277	0	0	0	0	10	0	0	0	0	0	0	0	2000
332 333	OTZ_208 OTZ 209	19093 5834	654362 653938	5229742 5229862	2353 2287	8 10	2	0	0	0	0	0	10 6	0	0	1	0	2000
334	OTZ 210	13992	654604	5230411	2322	10	0	0	0	0	0	0	0	0	0	1	0	2000
335	OTZ 211	7620	654758	5230993	2169	8	2	0	0	0	0	0	8	0	0	1	0	2000
336	OTZ_212	1488	654305	5233566	2351	10	0	0	0	0	0	0	10	0	0	1	0	2000
337	OTZ_213	2332	653764	5232456	2406	3	7	0	0	0	0	0	10	0	0	0	1	2000
338	OTZ_214	1825	653515	5232464	2428	6	4	0	0	0	0	0	8	0	0	1	0	2000
339	OTZ_215	1168	653275	5232663	2443	10	0	0	0	0	0	0	8	0	0	1	0	2000
340 341	OTZ_216 OTZ 217	2130 17294	652576 652445	5232366 5232656	2362 2423	10 10	0	0	0	0	0	0	8	0	0	1	0	2000
342	OTZ 218	8284	652189	5232441	2428	10	0	0	0	0	0	0	8	0	0	1	0	2000
343	OTZ_219	10662	651990	5232777	2489	10	0	0	0	0	0	0	0	0	0	1	0	2000
344	OTZ_220	412	650264	5233770	2441	10	0	0	0	0	0	0	0	0	0	1	0	2000
345	OTZ_221	1338	649106	5233451	2199	10	0	0	0	0	0	0	0	0	0	1	0	2000
346	OTZ_222	1025	648743	5233484	2142	10	0	0	0	0	0	0	0	0	0	1	0	2000
347 348	OTZ_223 OTZ 224	445 1430	648329 654035	5233490 5234356	2105 2468	10 10	0	0	0	0	0	0	0	0	0	1	0	2000
349	OTZ 225	491	653709	5234525	2408	10	0	0	0	0	0	0	0	0	0	1	0	2000
350	OTZ_226	3204	655576	5235769	2232	2	8	0	0	0	0	0	8	0	0	0	1	2000
351	OTZ_227	1972	646886	5196180	2653	2	8	0	0	0	0	0	10	0	1	0	0	2000
352	OTZ_064	772	646488	5195743	2712	10	0	0	0	0	0	0	0	1	0	0	0	2000
353	OTZ_228	2651	652330	5184547	2926	10	0	0	0	0	0	6	10	1	0	0	0	2000
354 355	OTZ_134 OTZ 230	2592 3950	658345 648937	5199451 5231227	2717 2004	0	10	0	0 10	0	0	0	8	0	0	0	0	2000
356	OTZ_230	896	648449	5231227	2004	10	0	0	0	0	0	0	10	0	0	1	0	2000
357	OTZ_232	1015	648822	5229553	2345	10	0	0	0	0	0	0	0	0	0	1	0	2000
358	OTZ_233	290	648572	5229517	2335	10	0	0	0	0	0	0	0	0	0	1	0	2000
359	OTZ_234	1402	648147	5229455	2404	10	0	0	0	0	0	0	0	0	0	1	0	2000
360	OTZ_235	2519	648817	5228605	2460	3	7	0	0	0	0	0	7	0	0	0	1	2000
361 362	OTZ_236 OTZ_237	1100 442	649714 649792	5228298 5228422	2263 2258	4 6	6 4	0	0	0	0	0	10 2	0	0	0	0	2000
363	OTZ_237	445	649951	5228776	2198	3	7	0	0	0	0	0	10	0	0	0	1	2000
364	OTZ 239	6760	650057	5228979	2189	4	6	0	0	0	0	0	10	0	0	0	1	2000
365	OTZ_240	3458	649777	5227156	2446	7	3	0	0	0	0	0	3	0	0	1	0	2000
366	OTZ_241	964	649636	5227063	2448	7	3	0	0	0	0	0	10	0	0	1	0	2000
367	OTZ_242	314	649165	5226783	2592	7	3	0	0	0	0	0	0	1	0	0	0	2000
368 369	OTZ_243 MEL 001	984 13648	650809 660303	5228206 5232674	2090 2290	6 8	2	0	0	0	0	0	8	0	0	1	0	2000
370	MEL 002	801	661630		2300	10	0	0		0	0	0	0	0	0	1	0	2000
371	MEL_003	17816	661726	5232141	2292	7	3	0	0	0	0	0	8	0	0	1	0	2000
372	MEL_004	1953	661598	5232760	2168	10	0	0	0	0	0	0	0	0	0	1	0	2000
373	MEL_005	672	658758	5231538	2247	10	0	0	0	0	0	0	10	0	0	1	0	2000
374 375	MEL_006 MEL 007	13717 778	656037	5226870 5226186	2547	2	8	0	0	0	0	0	10	0	1	0	0	2000
375	MEL_007 MEL 008	778 828	655475 655162	5226186	2751 2799	10	8	0	0	0	0	0	0	0	1 0	0	0	2000
377	MEL_009	322	655372	5225546	2999	1	9	0		0	0	0	10	0	1	0	0	2000
378	MEL_010	4854	655565	5225505	2931	3	7	0	0	0	0	0	8	0	1	0	0	2000
379	MEL_011	1196	657400		2412	10	0	0		0	0	0	0	0	0	1	0	2000
380	MEL_012	2542	657449	5223107	2420	10	0	0	0	0	0	0	0	0	0	1	0	2000
381	MEL_013 MEL 014	817 4176	657188 657105	5222505 5221602	2658 2678	3 10	7	0	0	0	0	0 5	2 0	0 1	0	0	0	2000
382	MEL_014 MEL 015	5203	656997	5221602	2678 2747	10	0	0	0	0	0	3	8	1	0	0	0	2000
384	MEL_016	1580	658646	5222089	2819	1	9	0		0	0	0	6	0	1	0	0	2000
385	MEL_017	1598	660285	5224379	2261	10	0	0	0	0	0	0	0	0	0	1	0	2000
386	MEL_018	3048	659416		2577	10	0	0		0	0	0	0	0	0	1	0	2000
387	MEL_020	760	660217	5223844	2337	10	0	0	0	0	0	0	0	0	0	1	0	2000
388	MEL_021	1696 1841	659980	5223362	2353	10 10	0	0	0	0	0	0	10	0	0	1	0	2000
389 390	MEL_022 MEL 023	1841 420	659355 659887	5221435 5221212	2685 2538	10	0	0	0	0	0	0	0 8	0	0	0 1	0	2000
391	MEL_024	2645	659867	5220516	2467	10	0	0		0	0	0	10	0	0	1	0	2000
392	MEL_025	440	658901	5220437	2693	4	6	0	0	0	0	0	0	0	0	0	1	2000
393	MEL_026	396	658869	5216389	2662	10	0	0		0	0	0	0	1	0	0	0	2000
394	MEL_027	2355	663020	5218017	2817	0	10	0	0	0	0	0	10	0	1	0	0	2000
395	MEL_028	4070 796	664315	5221695	2621	10	0	0	0	0	0	0	4	0	0	1	0	2000
396	MEL_029	796	664201	5221912	2618	10	0	U	U	0	U	0	8	0	U	1	0	2000

The color of the			l		Ī	l .							-			-	1		
Methods Meth						_	ra	dro	da	qs	hr	ct	dr	of	ora	glr	а		ar
Methods Meth		a				ation	ow_	ped_	jce.	_lan		onta	atsı	ru.	u_	pe_	nor	oedr	ye
99 MEL 030 704 665571 \$226689 \$2280 8 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 2000 939 MEL 031 702 665000 \$226699 \$22699 \$2138 10 0 0 0 0 0 0 0 0 0 10 0 0 0 1 1 0 2000 939 MEL 032 555 66524 \$225588 \$2318 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 1 2 0 2000 940 MEL 033 555 66524 \$225585 \$225524 \$2550 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 1 2 0 0 0 0	ake	am	rea			leva	ake	ake_	ake_	ake_	ake_		<u>></u>	urf,	lose	lose	ar_r	ar_k	oea
398 MEL 031															٥		·	Ę	0.0
399 MEL 032 4714 6652345 5225244 2305 3 7 0 0 0 0 0 0 0 0 1 0 2000 400 MEL 033 4714 6652345 5225241 2305 3 7 0 0 0 0 0 0 0 0 0			_										_					_	
MEL GRAPH MEL GRAPH MEL GRAPH MEL MEL MEL GRAPH MEL MEL MEL GRAPH MEL							_				_			_	_				
MEL, 0.14 228S 665138 5225221 2596 3 7 0 0 0 0 0 0 0 0 0							_				_		_				_	_	
Met. 036							_				_		_		_				
404 MEL 037 1024 665004 5232937 2577 4 6 0 0 0 0 0 0 0 8 8 0 0 0 1 2000 405 MEL 038 1500 665056 5232939 2571 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0	402	MEL_035	791	664957	5224342	2567	10	0	0	0	0	0	0	2	0	0	1	0	2000
Met. 038									_				_					_	
Mot.							-		_		_		_				_	_	
MEL_040													_				_		
Melic Meli							_		_		_				_				
MEL_043	408					2584	10				0		0			0	_	0	
411 MEL, 044 1249 666399 5222571 2288 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	409	MEL_042	2329	665560	5223345	2458	10	0	0	0	0	0	0	2	0	0	1	0	2000
413 MEL_045 35:43 66:5007 5922694 26:15 9 1 0 0 0 0 0 0 0 2 0 0 0 1 0 0 20 0 0 2 2 0 0 1 1 0 2000 414 MEL_047 1482 66:6657 5921922 26:00 9 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 20 0 0 20 0 1 1 0 2000 415 MEL_048 975 66:4657 5921922 26:00 9 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2000 416 MEL_047 1482 52:25:25:25:25:25:25:25:25:25:25:25:25:2							_				_		-		_				
413 MEL 046							_		_					_				_	
414 MEL 047																	_	_	
415 SIL_001							_		_			-			_				
411 SIL_002													_					_	
418 SIL_003	416	SIL_001	4148	671862	5223519	2458	10	0	0	0	0	0	0	2	0		1	0	2007
419 SIL_004 486 663491 S216984 2558 10 0 0 0 0 0 0 0 0	$\overline{}$						_								_			_	
A20									_			_	_				_	_	
421 SIL 006 850 663050 S216240 2.552 2 8 0 0 0 0 0 0 0 0 0															_			_	
422 SIL_007 15043 661587 S214623 2892 0 10 0 0 0 0 0 0 0							-		_				_				_	_	
424 SIL_009							0		0	0	0	0	0	8	0	1	0	0	
425 SIL 010 1597 664856 5215680 2498 0 10 0 0 0 0 0 0 0	423	SIL_008	6524	664175	5215210	2657	10	0	0		0	0	0	8	1	0	0	0	2000
426 SIL_011 1774 664272 S216283 2263 2 8 0 0 0 0 0 0 0 0 0									_		_		_		-		_		
A27 SIL_012 1278 666572 S214853 2724 10 0 0 0 0 0 0 0 10 0							_				_				_				
428 SIL_013																	_		
430 SIL_015 7550 664259 5211372 2900 1 9 0 0 0 0 10 10	$\overline{}$						_		_		_	-			-		_		
431 SIL_016 1286 663965 5209973 2420 10 0 0 0 0 0 0 0 2 1 0 0 0 0 2000 432 SIL_017	429		1047	666990	5213471	2272	1	9	0	0	0	0	0	0	0	0	0	1	2000
432 SIL_017	430	SIL_015		664259	5211372	2900	1		0		0		10	10	0			0	2000
433 SIL_018 36748 661770 5209179 2483 3 7 0 0 0 0 0 0 0 0 0 0 0 1 2000 434 SIL_019 920 662257 5209417 2418 2 8 0 0 0 0 0 0 10 0 0 0 0 1 2000 435 SIL_020 582 660802 5207576 2710 0 10 0 0 0 0 10 0 10 0 0 0 1 2000 436 SIL_021 9870 661180 5206840 2615 0 0 0 0 0 10 0 10 10 10 0 0 0 0 2000 437 SIL_022 3203 661189 5207194 2618 6 4 0 0 0 0 0 2 2 0 1 0 0 0 0 2000 438 SIL_024 1013 662161 5207347 2502 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-												_		-			_	
434 SIL_019 920 662257 5209417 2418 2 8 0 0 0 0 0 0 10 0 0 0 1 2000 1 2000 3435 SIL_020 582 660802 5207576 2710 0 10 0 0 0 0 0 0 0 10 0 0 0 0 1 2000 1 2000 375 SIL_022 3203 661180 5206840 2615 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							_				_	-			_				
435 SIL_020 582 660802 5207576 2710 0 10 0 0 0 0 0 10 0							-	_	-		-	_			_		_		
437 SIL_022 3203 661189 5207194 2618 6 4 0 0 0 2 0 1 0 </td <td>_</td> <td></td>	_																		
438 SIL_024 1013 662161 5207347 2502 3 7 0 </td <td>436</td> <td>SIL_021</td> <td>9870</td> <td>661180</td> <td>5206840</td> <td>2615</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>10</td> <td>0</td> <td>10</td> <td>10</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2000</td>	436	SIL_021	9870	661180	5206840	2615	0	0	0	0	10	0	10	10	0	0	0	0	2000
A39 SIL_025 526 661667 5206829 2595 10 0 0 0 0 0 0 0 0																	_		
440 SIL_026 328 661731 5206760 2577 6 4 0 0 0 0 0 1 0 2000 441 SIL_027 28354 665464 5206515 2289 8 2 0 0 0 0 0 1 0 2000 442 SIL_028 49732 667314 5206655 2333 7 3 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>							_								_		_		
441 SII_027 28354 665464 5206515 2289 8 2 0 0 0 0 0 1 0 2000 442 SIL_028 49732 667314 5206365 2333 7 3 0								_					_					_	
442 SIL_028 49732 667314 5206365 2333 7 3 0<															_				
444 SIL_030 919 667550 5206658 2445 3 7 0 <td>442</td> <td></td> <td></td> <td>667314</td> <td>5206365</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>1</td> <td>0</td> <td>2000</td>	442			667314	5206365				0	0	0	0	0		0		1	0	2000
445 SIL_031 1620 667785 5206883 2543 8 2 0 0 0 6 0 0 1 0 2000 446 SIL_032 1168 667501 5206979 2513 3 7 0															_		_		
446 SIL_032 1168 667501 5206979 2513 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td></td<>										_					_		_		
447 SIL_033 6463 667586 5207199 2551 3 7 0 </td <td>$\overline{}$</td> <td></td>	$\overline{}$																		
448 SIL_034 2463 667332 5207485 2496 4 6 0 0							_								_		_		
449 SIL_035 1433 667264 5207630 2491 4 6 0 0							-		_								_		
451 SIL_037 24133 668774 5204932 2493 10 0	449	SIL_035	1433	667264		2491	4	6					0		0		0	1	2000
452 SIL_038 2116 668102 5204211 2831 1 9 0 0 0 0 1 0 1 0 0 2000 453 SIL_039 5945 668101 5204053 2834 0 10 0 0 0 0 0 8 0 1 0 0 2000 454 SIL_040 372 67026 5205443 2809 4 6 0 0 0 8 8 4 0 1 0 0 2000 455 SIL_041 3757 670561 5205983 2748 1 9 0 0 10 10 2 0 1 0 0 2000 456 SIL_042 2039 670434 5206115 2719 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td>_</td> <td>_</td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td></td>													_	_	-		_	_	
453 SIL_039 5945 668101 5204053 2834 0 10 0<															_		_	_	
454 SIL_040 372 670026 5205443 2809 4 6 0 0 0 8 8 4 0 1 0 0 2000 455 SIL_041 3757 670561 5205983 2748 1 9 0 0 0 10 10 2 0 1 0 0 2000 456 SIL_042 2039 670434 5206115 2719 0 10 0 0 0 0 10 8 0 1 0 0 2000 457 SIL_043 351 669909 5206843 2431 1 9 0													_			_	_		
455 SIL_041 3757 670561 5205983 2748 1 9 0 0 0 10 10 2 0 1 0 0 2000 456 SIL_042 2039 670434 5206115 2719 0 10 0 0 0 0 10 8 0 1 0 0 2000 457 SIL_043 351 669909 5206843 2431 1 9 0											_		-		_				
456 SIL_042 2039 670434 5206115 2719 0 10 0 0 0 10 8 0 1 0 0 2000 457 SIL_043 351 669909 5206843 2431 1 9 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td>									_								_	_	
458 SIL_044 1112 669844 5206765 2404 2 8 0 </td <td>456</td> <td>SIL_042</td> <td>2039</td> <td>670434</td> <td>5206115</td> <td>2719</td> <td>0</td> <td>10</td> <td>0</td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>2000</td>	456	SIL_042	2039	670434	5206115	2719	0	10	0				10		0		0	0	2000
459 SIL_045 5249 675195 5212161 2397 1 9 0															_		_		
460 SIL_046 515 672669 5210730 2646 7 3 0	_												_				_		
461 SIL_047 3305 672635 5210582 2651 10 0 0 0 0 0 0 0 0 0 0 1 0 2000							_						_		_				
									_			_		_	_			_	
							_								_			_	

		Ī		Ī	ı	1 1						Т						
					_	ra	dro	da	qs	hr	נד	dr	of	ora	adr	а		ar
⊆ ,	a				elevation	lake_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	_runof	close_mora	_bedr	far_mora	_bedr	goea_year
lake_	name	area			leva	ake	lake_	ake_	lake	lake_	g _cc	<u>></u>	surf_	lose	close_	ar_r	far_t	oea
			×	>			ķ									Ċ	Ę	0.0
463	SIL_049	381	672109	5207524	2250	10	0	0	0	0	0	0	10	0	0	1	0	2000
464	SIL_050	755 480	672063	5207041	2396	10	10	0	0	0	0	0	0	0	0	0	1	2000
465 466	SIL_051 SIL 052	489 5340	675680 694416	5207714 5207611	2161 2452	10 9	0	0	0	0	0	0	0	0	0	1	0	2000
467	SIL 054	452	693674	5207511	2323	0	10	0	0	0	0	0	0	0	0	0	1	2007
468	SIL 055	299	693676	5207572	2322	0	10	0	0	0	0	0	0	0	0	0	1	2007
469	SIL_056	10241	695320	5207843	2490	1	9	0	0	0	0	0	4	0	0	0	1	2007
470	SIL_057	751	695547	5208923	2415	2	8	0	0	0	0	0	6	0	0	0	1	2007
471	SIL_058	646	700560	5214258	2726	3	7	0	0	0	0	0	8	0	1	0	0	2007
472	SIL_059	735	700474	5214315	2722	7	3	0	0	0	0	0	6	1	0	0	0	2007
473 474	SIL_060 SIL 061	701 6060	699301 699195	5216152 5217189	2425 2373	10	6	0	0	0	0	0	4 0	0	0	1	0	2007 2007
474	SIL 062	5649	699236	5224114	2661	3	7	0	0	0	0	0	10	0	0	0	1	2007
476	SIL_063	304	698798	5224927	2631	4	6	0	0	0	0	0	0	0	0	0	1	2007
477	SIL_064	1371	699023	5225236	2606	8	2	0	0	0	0	0	0	0	0	1	0	2007
478	SIL_065	5659	698750	5225397	2526	4	6	0	0	0	0	0	2	0	0	0	1	2007
479	SIL_066	1248	698608	5225504	2505	10	0	0	0	0	0	0	4	0	0	1	0	2007
480	SIL_067	1600	698787	5225627	2528	2	8	0	0	0	0	0	10	0	0	0	1	2007
481 482	SIL_068 SIL 069	8015 1182	698099 694835	5226688 5226746	2349 2174	7 10	3 0	0	0	0	0	0	10	0	0	1	0	2007 2007
483	SIL_069 SIL 070	853	692617	5226746	21/4	8	2	0	0	0	0	0	0	0	0	1	0	2007
484	SIL_070	521	692088	5226703	2483	8	2	0	0	0	0	0	0	0	0	1	0	2007
485	SIL_072	539	689771	5225620	2106	10	0	0	0	0	0	0	0	0	0	1	0	2007
486	SIL_073	259	692614	5228076	2651	2	8	0	0	0	0	0	0	0	0	0	1	2007
487	SIL_074	318	692130	5228473	2597	0	10	0	0	0	0	0	8	0	0	0	1	2007
488	SIL_075	398	691407	5228638	2498	1	9	0	0	0	0	0	0	0	0	0	1	2007
489 490	SIL_076 SIL 077	1489 1128	691390 689595	5228708 5229463	2520 2379	0 4	10 6	0	0	0	0	0	10	0	0	0	1	2007
490	SIL_077	3749	690755	5229403	2238	8	2	0	0	0	0	0	10	0	0	1	0	2007
492	SIL 079	1024	691443	5229422	2388	9	1	0	0	0	0	0	10	0	0	1	0	2007
493	SIL_080	935	691559	5229463	2378	9	1	0	0	0	0	0	6	0	0	1	0	2007
494	SIL_081	5145	691495	5229514	2374	9	1	0	0	0	0	0	8	0	0	1	0	2007
495	SIL_082	6520	691576	5229636	2365	9	1	0	0	0	0	0	10	0	0	1	0	2007
496	SIL_083	1110	692376	5229451 5229609	2400	8	10	0	0	0	0	0	8	0	0	1	0	2007
497 498	SIL_084 SIL 085	543 935	692457 692554	5229609	2378 2435	0 6	10	0	0	0	0	0	10 8	0	0	0	0	2007 2007
499	SIL 086	698	692643	5229215	2427	0	10	0	0	0	0	0	10	0	0	0	1	2007
500	SIL_087	2071	694886	5228103	2362	1	9	0	0	0	0	0	4	0	0	0	1	2007
501	SIL_088	485	694750	5228226	2331	6	4	0	0	0	0	0	6	0	0	1	0	2007
502	SIL_089	316	694783	5228260	2334	6	4	0		0	0	0	4	0	0	1	0	2007
503	SIL_090	981	695739	5230606		6	4	0	0	0	0	0	0	0	0	1	0	2007
504 505	SIL_091 SIL 092	407 1404	694804 695693	5231379 5234038	2167 2099	10 10	0	0	0	0	0	0	0	0	0	1	0	2007 2007
506	SIL_092 SIL_094	813	696219	5234038	2329	10	0	0	0	0	0	0	0	0	0	1	0	2007
507	SIL_095	612	695983	5228247	2296	7	3	0		0	0	0	0	0	0	1	0	2007
508	SIL_096	440	696191	5227577	2204	10	0	0	0	0	0	0	0	0	0	1	0	2007
509	SIL_097	853	696319	5226976		7	3	0		0	0	0	0	0	0	1	0	2007
510	SIL_098	1237	696683	5226887	2320	3	7	0	0	0	0	0	10	0	0	0	1	2007
511	SIL_099	862 3730	696585	5227286 5227109		10	2	0	0	0	0	0	9	0	0	1	0	2007
512 513	SIL_100 SIL 101	3730 493	696976 696854	5227109	2254 2266	8 6	4	0	0	0	0	0	8	0	0	1	0	2007 2007
514	SIL 102	1577	697718	5227037		2	8	0		0	0	0	0	0	0	0	1	2007
515	SIL_103	1439	697599	5227467	2331	2	8	0	0	0	0	0	0	0	0	0	1	2007
516	SIL_104	482	697636	5227894	2229	6	4	0	0	0	0	0	0	0	0	1	0	2007
517	SIL_105	313	697683	5227894	2230	6	4	0	0	0	0	0	0	0	0	1	0	2007
518	SIL_106	8878	697785	5227775		4	6	0		0	0	0	8	0	0	0	1	2007
519 520	SIL_107	567 2100	697981	5227550	2323	10	6	0	0	0	0	0	8 10	0	0	0	1	2007
520 521	SIL_108 SIL 109	2100 1915	698504 702130	5227832 5227238	2281 2377	10 10	0	0	0	0	0	0	10	0	0	1	0	2007 2007
521	SIL_109 SIL 110	1665	702130	5227238	2377	10	0	0	0	0	0	0	0	0	0	1	0	2007
523	SIL_111	846	701600	5228794	2279	2	8	0		0	0	0	9	0	0	0	1	2007
524	SIL_112	612	701795	5228927	2319	2	8	0	0	0	0	0	8	0	0	0	1	2005
525	SIL_113	745	701372	5231519		10	0	0		0	0	0	6	0	0	1	0	2005
526	SIL_114	653	701118	5232139	2386	8	2	0	0	0	0	0	6	0	0	1	0	2005
527	SIL_115	2547	700808	5235327	2153	8	2	0		0	0	0	10	0	0	1	0	2005
528	SIL_116	396	702152	5232919	2355	2	8	0	0	0	0	0	10	0	0	0	1	2005

		1		1							1	- 1			-	1		
					_	ra	dro	da	qs	hr	ಕ	dr	of	ora	glr	а		ar
⊆ੂ	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	_bedr	far_mora	_bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake_	lake_	g c	<u>></u>	surf_	lose	close	ar_r	far_t	oea
			×	>												·	Ę	0.0
529	SIL_119	417	705120	5231364	2348	7	3	0	0	0	0	0	0	0	0	1	0	2005
530	SIL_121	310 263	706909	5231973	2373	8	2	0	0	0	0	0	2	0	0	1	0	2005
531 532	SIL_122 SIL 123	268	706877 706873	5232004 5238514	2372 2198	8	2	0	0	0	0	0	0	0	0	1	0	2000
533	SIL 125	6102	662127	5209428	2414	1	9	0	0	0	0	0	10	0	0	0	1	2000
534	ZIL_001	2119	709114	5235929	2158	10	0	0	0	0	0	0	0	0	0	1	0	2005
535	ZIL_002	1738	708837	5232842	2268	4	6	0	0	0	0	0	10	0	0	0	1	2005
536	ZIL_003	1381	708765	5232983	2283	6	4	0	0	0	0	0	10	0	0	1	0	2005
537	ZIL_004	1022	713076	5234296	2209	10	0	0	0	0	0	0	0	0	0	1	0	2000
538 539	ZIL_005 ZIL 006	1020 405	713551 713037	5234660 5234535	2131 2216	6 10	4 0	0	0	0	0	0	0	0	0	1	0	2000
540	ZIL 007	4533	712168	5236367	2287	4	6	0	0	0	0	0	8	0	0	0	1	2000
541	ZIL_008	8275	712202	5230151	2069	0	0	0	0	10	0	0	0	0	0	0	0	2007
542	ZIL_009	436	711170	5230802	2234	6	4	0	0	0	0	0	0	0	0	1	0	2007
543	ZIL_010	1267	709696	5230639	2380	4	6	0	0	0	0	0	10	0	0	0	1	2007
544	ZIL_011	2107	710012	5230733	2287	8	2	0	0	0	0	0	10	0	0	1	0	2007
545 546	ZIL_012 ZIL 013	1770 9759	710124 712450	5229597 5227924	2344 2073	9	0	0	0	10	0	0	9	0	0	1 0	0	2007 2007
547	ZIL_013 ZIL 014	251	712430	5229478	2184	9	1	0	0	0	0	0	0	0	0	1	0	2007
548	ZIL_015	2698	707747	5231174	2443	1	9	0	0	0	0	0	10	0	0	0	1	2005
549	ZIL_016	617	707497	5231236	2443	0	10	0	0	0	0	0	10	0	0	0	1	2005
550	ZIL_017	604	707420	5231229	2429	1	9	0	0	0	0	0	10	0	0	0	1	2005
551	ZIL_018	1204	707032	5231229	2380	3	7	0	0	0	0	0	8	0	0	0	0	2005
552 553	ZIL_019 ZIL 020	347 850	706480 705739	5230737 5230779	2389 2260	9	1	0	0	0	0	0	10	0	0	1	0	2007 2007
554	ZIL_020	406	703733	5231254	2423	9	1	0	0	0	0	0	8	0	0	1	0	2005
555	ZIL_022	373	704504	5231293	2379	9	1	0	0	0	0	0	8	0	0	1	0	2005
556	ZIL_023	696	703583	5230594	2302	10	0	0	0	0	0	0	10	0	0	1	0	2007
557	ZIL_024	9266	702486	5229651	2355	3	7	0	0	0	0	0	8	0	0	0	1	2007
558	ZIL_025	1205	702277	5227790	2354	9	1	0	0	0	0	0	0	0	0	1	0	2007
559 560	ZIL_026 ZIL 027	3527 20992	702610 702925	5227379 5227498	2266 2259	9	1	0	0	0	0	0	6 8	0	0	1	0	2007 2007
561	ZIL 028	1524	703291	5227105	2327	10	0	0	0	0	0	0	0	0	0	1	0	2007
562	ZIL_033	1733	702405	5225872	2413	6	4	0	0	0	0	0	9	0	0	1	0	2007
563	ZIL_034	17807	699974	5223911	2665	8	2	0	0	0	0	0	10	0	0	1	0	2007
564	ZIL_035	560	700740	5223008	2455	10	0	0	0	0	0	0	2	0	0	1	0	2007
565	ZIL_037	844	701033	5223217	2449	10	0	0	0	0	0	0	8	0	0	1	0	2007
566 567	ZIL_038 ZIL 039	2685 524	701246 701555	5223259 5223426	2452 2408	9 10	0	0	0	0	0	0	8	0	0	1	0	2007
568	ZIL 040	585	700891	5220204	2259	10	0	0		0	0	0	0	0	0	1	0	2007
569	ZIL_041	11422	700709	5219166	2339	0	0	0	0	10	0	0	0	0	0	0	0	2007
570	ZIL_043	781	702769	5217328	2566	4	6	0	0	0	0	0	0	0	1	0	0	2007
571	ZIL_044	519	707203	5221467	2533	10	0	0		0	0	0	0	1	0	0	0	2007
572 573	ZIL_046 ZIL 047	1624 2786	709260 708631	5220443 5221032	2432 2705	8	2 9	0	0	0	0	0	10	0	0	0	0	2007 2007
574	ZIL_047 ZIL 048	2786	708550	5221032	2697	2	8	0	0	0	0	0	0	0	0	0	1	2007
575	ZIL_049	2492	708542	5220744	2664	1	9	0		0	0	0	10	0	0	0	1	2007
576	ZIL_050	316	708622	5220771	2667	2	8	0	0	0	0	0	0	0	0	0	1	2007
577	ZIL_051	1149	708161	5220554	2763	0	10	0		0	0	0	10	0	0	0	1	2007
578	ZIL_052	326	708107	5220460	2752	0	10	0	0	0	0	0	9	0	0	0	1	2007
579 580	ZIL_053 ZIL 054	466 4610	708062 708002	5220489 5220517	2759 2766	2	9 8	0		0	0	0	0	0	0	0	1	2007 2007
581	ZIL_034 ZIL 055	959	708002	5220317	2747	3	7	0	0	0	0	0	10	0	0	0	1	2007
582	ZIL_057	1943	707981	5220147	2713	2	8	0		0	0	0	6	0	0	0	1	2007
583	ZIL_060	5659	708031	5219651	2573	1	9	0	0	0	0	0	10	0	0	0	1	2007
584	ZIL_061	827	708102	5219418	2501	2	8	0		0	0	0	10	0	0	0	1	2007
585	ZIL_062	290	708060	5219278	2502	1	9	0	0	0	0	0	9	0	0	0	1	2007
586 587	ZIL_063 ZIL 064	2567 298	708248 707318	5218943 5219352	2410 2665	9	10	0	0	0	0	0	0	0	0	0	1	2007 2007
588	ZIL_064 ZIL 067	1807	707318	5219332	2631	8	2	0	0	0	0	0	0	1	0	0	0	2007
589	ZIL_068	2682	706363	5219223	2728	6	4	0		0	0	0	10	1	0	0	0	2007
590	ZIL_069	1305	706432	5218990	2676	0	10	0	0	0	0	10	10	0	1	0	0	2007
591	ZIL_070	358	706385	5218923	2668	1	9	0		0	0	10	8	0	1	0	0	2007
592	ZIL_071	359	705988	5219023	2771	0	10	0	0	0	0	10	10	0	1	0	0	2007
593 594	ZIL_072 ZIL 074	298 717	706774 706239	5218663 5217916	2565 2804	8 2	2 8	0	0	0	0	0	10	0	0	0	0	2007 2007
J34	ZIL_U/4	/1/	700239	241/310	2004		0	U	U	U	U	U	ΤÜ	U	1	U	U	2007

		ı		Ī	Ī							ī			Т	1	1	
					_	ıra	dro	da	qs	hr	₽	dr	of	ora	_bedr	в		ar
⊆ ,	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	pe_	far_mora	bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake	lake_	g c	<u>></u>	surf_	lose	close	ar_r	far_t	oea
			×	>		il.	19									·	Ę	0.0
595	ZIL_075	4213	707266	5217821	2308	6	4	0	0	0	0	0	0	0	0	1	0	2007
596 597	ZIL_076 ZIL 077	28812 15966	706465 706207	5216696 5217251	2374 2667	1	6 9	0	0	0	0	0	10 10	0	0	0	1	2007
598	ZIL_077 ZIL 078	3004	705820	5217231	2640	2	8	0	0	0	0	0	0	0	0	0	1	2007
599	ZIL_079	1200	705806	5216712	2634	2	8	0	0	0	0	0	0	0	0	0	1	2007
600	ZIL_080	308	705926	5216932	2639	2	8	0	0	0	0	0	10	0	0	0	1	2007
601	ZIL_081	23398	704971	5216373	2447	8	2	0	0	0	0	0	2	0	0	1	0	2007
602	ZIL_082	4536	703295	5214164	2776	10	0	0	0	0	0	10	10	1	0	0	0	2007
603 604	ZIL_083 ZIL 084	468 7714	702322 702312	5213764 5211743	2836 2292	6 8	2	0	0	0	0	10 0	0	0	0	0 1	0	2007
605	ZIL 085	2164	702312	5211743	2283	8	2	0	0	0	0	0	8	0	0	1	0	2007
606	ZIL_087	399	702360	5208158	2216	10	0	0	0	0	0	0	0	0	0	1	0	2007
607	ZIL_089	408	711433	5211767	2180	3	7	0	0	0	0	0	0	0	0	0	1	2007
608	ZIL_090	252	711572	5211507	2247	7	3	0	0	0	0	0	0	0	0	1	0	2007
609 610	ZIL_091 ZIL 092	1043 732	711786 714486	5210064 5212163	2625 2119	10 7	0	0	0	0	0	0	0	0	0	0	0	2007
611	ZIL_092 ZIL 093	1532	714486	5212163	2736	2	8	0	0	0	0	0	10	0	1	0	0	2007
612	ZIL_094	7322	715248	5214005	2683	0	10	0	0	0	0	0	10	0	1	0	0	2007
613	ZIL_095	18943	714962	5213524	2479	2	8	0	0	0	0	0	10	0	0	0	1	2007
614	ZIL_096	507	715013	5213408	2466	3	7	0	0	0	0	0	9	0	0	0	1	2007
615 616	ZIL_097 ZIL 098	1246 410	714555 713445	5213213 5213480	2479 2760	9 10	0	0	0	0	0	0	0	0	0	1 0	0	2007 2007
617	ZIL_098 ZIL 099	1445	720049	5213480	2513	10	0	0	0	0	0	0	10	1	0	0	0	2007
618	ZIL 100	7379	724967	5215026	2494	6	4	0	0	0	0	10	10	1	0	0	0	2007
619	ZIL_101	8257	724796	5215041	2494	6	4	0	0	0	0	10	10	1	0	0	0	2007
620	ZIL_102	306	723228	5216941	2212	9	1	0	0	0	0	0	0	0	0	1	0	2007
621	ZIL_103	737	726455	5221868	2103	10	0	0	0	0	0	0	0	0	0	1	0	2007
622 623	ZIL_104 ZIL 105	313 499	725985 725934	5218260 5218110	2487 2499	8 10	0	0	0	0	0	0	10	1	0	0	0	2007 2007
624	ZIL_105 ZIL 106	1842	729206	5215110	2346	10	0	0	0	0	0	0	10	0	0	1	0	2007
625	ZIL_107	1540	729365	5215485	2350	10	0	0	0	0	0	0	10	0	0	1	0	2007
626	ZIL_108	3104	729841	5216045	2554	2	8	0	0	0	0	0	6	0	0	0	1	2007
627	ZIL_109	294	732332	5220823	2467	2	8	0	0	0	0	0	0	0	0	0	1	2007
628 629	ZIL_110	1717 602	737696 737504	5219104 5219123	2713 2688	2	8	0	0	0	0	2	10 10	0	1	0	0	2007 2007
630	ZIL_111 ZIL 112	777	736399	5219123	2599	10	0	0	0	0	0	0	0	1	0	0	0	2007
631	ZIL_114	12505	731366	5225011	2317	2	8	0	0	0	0	0	10	0	0	0	1	2007
632	ZIL_115	294	731267	5225466	2489	2	8	0	0	0	0	0	0	0	0	0	1	2007
633	ZIL_116	447	724340	5229107	2314	2	8	0	0	0	0	0	0	0	0	0	1	2007
634	ZIL_119	541	724009	5229012	2236	9	1	0		0	0	0	0	0	0	1	0	2007
635 636	ZIL_120 ZIL 123	1630 314	722095 722541	5229590 5229700	2208 2112	7 10	3 0	0	0	0	0	0	8	0	0	1	0	2007 2007
637	ZIL 124	1462	722932	5229390	2147	8	2	0	0	0	0	0	0	0	0	1	0	2007
638	ZIL_126	335	724148	5230140	2124	8	2	0	0	0	0	0	0	0	0	1	0	2007
639	ZIL_127	3009	724624		2237	3	7	0		0	0	0	10	0	0	0	1	2007
640	ZIL_129	847	729643	5226012	2509	10	0	0	0	0	0	0	0 8	1 0	0	0	0	2007
641 642	ZIL_130 ZIL 131	903 790	729846 733308	5226582 5229118	2237 2399	7 3	3 7	0	0	0	0	0	8	0	0	0	1	2007
643	ZIL_059	1832	709000		2413	6	4	0		0	0	0	10	0	0	1	0	2007
644	SAL_001	5626	734136	5230928	2172	7	3	0	0	0	0	0	10	0	0	1	0	2007
645	SAL_002	1360	734236	5229203	2673	2	8	0	0	0	0	5	10	0	1	0	0	2007
646	SAL_003 SAL_004	310	734165	5229182	2685	10	8	0	0	0	0	5 8	10	0	0	0	0	2007
647 648	SAL_004 SAL 005	2408 469	735310 735691	5227381 5227387	2466 2368	10	0	0		0	0	10	10	1	0	0	0	2007 2007
649	SAL_006	679	736249	5226697	2620	2	8	0	0	0	0	10	10	0	1	0	0	2007
650	SAL_007	140795	736878		2320	0	10	0	0	0	0	0	0	0	0	0	1	2007
651	SAL_008	19266	737450	5227627	2467	0	10	0	0	0	0	0	0	0	0	0	1	2007
652	SAL_009	509	737583	5226752	2720	2	8	0	0	0	0	0	10	0	1	0	0	2007
653 654	SAL_010 SAL 011	835 4037	737897 737321	5230209 5230771	2762 2449	7	9	0	0	0	0	0	10 10	0	1 0	0	0	2007 2007
655	SAL_011	515	737321	5230771	2434	7	3	0		0	0	0	8	0	0	1	0	2007
656	SAL_013	12656	737485	5231203	2493	2	8	0	0	0	0	0	0	0	0	0	1	2007
657	SAL_014	1701	737346	5231388	2431	1	9	0		0	0	0	0	0	0	0	1	2007
658	SAL_015	870	737286	5231400	2427	3	7	0	0	0	0	0	0	0	0	0	1	2007
659 660	SAL_016 SAL 017	281 1659	737349 737001	5231465 5231372	2430 2331	3	7 9	0	0	0	0	0	0	0	0	0	1	2007 2007
000	2VF_01/	1039	/3/001	JZJ13/Z	2331	1	3	U	U	U	U	U	U	U	U	U	T	2007

· ·		1		1	1													
					_	ra	dro	da	qs	hr	ct	dr	of	ora	_bedr	а		ar
\Box	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	pe_	far_mora	bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake_	lake_	oj_lg	<u>></u> ı	surf	lose	close	ar_r	far_k	oea
10	2	ъ	×	>	ď	19	li	l	ļ	lš	60	60	S	C	S	Ę	42	6.0
661	SAL_018	608	737183	5231649	2346	3	7	0	0	0	0	0	0	0	0	0	1	2007
662	SAL_019	43696	738513	5231420	2228	0	10	0	0	0	0	0	9	0	0	0	1	2000
663	SAL_020 SAL 021	2153 25460	738414 738954	5226932 5226883	2434 2406	10	3	0	0	0	0	0	0	0	0	1	0	2007 2007
664 665	SAL_021 SAL 022	25460	738954	5226083	2406	7 9	1	0	0	0	0	0	0	0	0	1	0	2007
666	SAL 023	600	737077	5225770	2337	10	0	0	0	0	0	0	0	0	0	1	0	2007
667	SAL_024	1207	738334	5225522	2295	2	8	0	0	0	0	0	0	0	0	0	1	2007
668	SAL_025	2384	737508	5225635	2448	6	4	0	0	0	0	0	4	0	0	1	0	2007
669	SAL_026	3494	737900	5223550	2409	3	7	0	0	0	0	0	8	0	0	0	1	2007
670	SAL_028	265	740150	5224338	2481	10	0	0	0	0	0	0	0	0	0	1	0	2007
671	SAL_030	535	739948	5224148	2440	10	0	0	0	0	0	0	10	0	0	1	0	2007
672 673	SAL_031 SAL 032	252856 23626	737859 740695	5220326 5220524	2562 2611	3	8 7	0	0	0	0	0	10 10	0	1	0	0	2007 2000
674	SAL_032	6240	740053	5220601	2612	0	10	0	0	0	0	0	10	0	1	0	0	2000
675	SAL 034	768	740628	5220618	2618	1	9	0	0	0	0	0	0	0	1	0	0	2000
676	SAL_035	13220	747225	5220397	2388	6	0	4	0	0	10	10	6	1	0	0	0	2003
677	SAL_036	13825	742747	5232562	2298	3	7	0	0	0	0	0	8	0	0	0	1	2007
678	SAL_037	135178	744628	5230402	2074	0	10	0	0	0	0	0	10	0	1	0	0	2007
679	SAL_038	5180	744456	5230238	2089	10	0	0	0	0	0	0	0	0	0	1	0	2007
680	SAL_039	13472	745691	5229548	2138	2	8	0	0	0	0	0	10	0	0	0	1	2007
681 682	SAL_040 SAL_041	3171 1054	744832 744626	5228633 5228646	2624 2636	1	9	0	0	0	0	0	10 6	0	0	0	1	2007 2007
683	SAL_041 SAL 042	1950	745001	5228040	2519	7	3	0	0	0	0	0	6	0	0	1	0	2007
684	SAL 043	4018	744937	5228080	2523	3	7	0	0	0	0	0	6	0	0	0	1	2007
685	SAL_044	8026	745190	5226784	2342	10	0	0	0	0	0	10	10	1	0	0	0	2007
686	SAL_045	10371	745399	5226152	2394	10	0	0	0	0	0	10	10	1	0	0	0	2007
687	SAL_046	888	745581	5226429	2441	10	0	0	0	0	0	0	0	1	0	0	0	2007
688	SAL_047	897	745598	5227403	2295	1	9	0	0	0	0	0	0	0	0	0	1	2000
689	SAL_048	2040	750578	5222575	2484	8	2	0	0	0	0	0	0	1	0	0	0	2000
690 691	SAL_049 SAL_050	387 951	750578 750339	5222610 5223272	2481 2261	8 4	2	6	0	0	10	0 10	0	0	0	0	0	2000
692	SAL_050	3299	750230	5223508	2240	10	0	0	0	0	0	0	0	1	0	0	0	2000
693	SAL 052	495	750134	5223513	2230	4	0	6	0	0	10	10	0	0	0	0	0	2000
694	SAL_053	2361	750169	5223588	2230	10	0	0	0	0	0	0	0	1	0	0	0	2000
695	SAL_054	4280	749994	5223491	2230	10	0	0	0	0	0	0	0	1	0	0	0	2000
696	SAL_055	293	750028	5223534	2223	10	0	0	0	0	0	0	0	1	0	0	0	2000
697	SAL_056	2126	749998	5223592	2219	10	0	0	0	0	0	0	0	1	0	0	0	2000
698	SAL_057	4835	749931	5223677	2212	0		0	0	0	0	0	0	1	0	0	0	2000
699 700	SAL_059 SAL 060	271 781	757225 757109	5228897 5231193	2434 2764	8	2 6	4	0		0	10	0		1	0	0	2000
701	SAL_000	1634	757103	5231100	2753	0	6	4	0	0	0	10	0	0	1	0	0	2003
702	SAL 062	8348	756452	5232071	2620	6	4	0	0		10	10	10	1	0	0	0	2000
703	SAL_063	1509	756617	5232094	2626	3	7	0	0	0	0	10	0	0	1	0	0	2000
704	SAL_064	902	756319	5232089	2624	9	1	0	0		10	10	8	1	0	0	0	2000
705	SAL_066	251	756501	5232245	2611	7	3	0			0	10	10	1	0	0	0	2000
706	SAL_068	390	756347	5232072	2623	9	1 7	0	0	0	10	10	0	1	0 1	0	0	2000
707 708	SAL_069 SAL 070	494 500	756340 755987	5232154 5232515	2624 2664	3	9	0	0	0	0	10	10	0	1	0	0	2000
708	SAL_070	2197	755988	5232515	2672	1	9	0			0	0	10	0	0	0	1	2000
710	SAL_071	285	756062	5232464	2645	1	9	0	0		0	0	10	0	0	0	1	2000
711	SAL_074	278	756305	5232683	2600	2	8	0	0		0	0	0	0	0	0	1	2000
712	SAL_075	28910	754271	5236626	2081	7	3	0			0	0	8	0	0	1	0	2003
713	SAL_076	661	755677	5237454	2003	10	0	0	0	_	0	0	0	0	0	1	0	2000
714	SAL_077	7559	755343	5236025	2078	2	8	0			0	0	8	0	0	0	1	2003
715 716	SAL_078 SAL 079	6899 1985	755873 756144	5234289 5234014	2247 2332	9 10	0	0	0	0	0	0	10	0	0	1	0	2003
716	SAL_079 SAL 080	271172	759073	5234014	2332	2	8	0	0	0	0	0	10	0	0	0	1	2003
717	SAL_080	397	763237	5229212	2531	10	0	0	0	_	0	0	0	0	0	1	0	2003
719	SAL_082	395	763054	5229149	2486	2	8	0	0	0	0	0	10	0	0	0	1	2003
720	SAL_083	5795	762966	5229256	2481	2	8	0	0	0	0	0	10	0	0	0	1	2003
721	SAL_084	365	761445	5230452	2427	8	2	0			0	0	0	0	0	1	0	2003
722	SAL_085	400	761446	5230577	2426	6	4	0	0		0	0	0	0	0	1	0	2003
723	SAL_086	1229	761502	5230629	2418	6	4	0	0	0	0	0	8	0	0	1	0	2003
724 725	SAL_087 SAL_088	1499 595	761376 760644	5230620 5235456	2414 2130	6 10	4	0	0	0	0	0	0	0	0	1	0	2003
725	SAL_088 SAL 093	325	760841	5235456	2062	10	0	0	0		0	0	0	0	0	1	0	2003
, 20	3, .L_033	323	,00041	3230037	2002	10	U	U	U	U	U	U	U	U	U	1	U	-003

		I		Ī	ı							-				1	1	
					_	ra	dro	da	qs	hr	ct	dr	of	ora	_bedr	а		ar
⊆ ,	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	q_	far_mora	_bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake_	lake_	gl_cc	<u>></u>	surf_	lose	close_	ar_r	far_t	oea
			×	>			19							٥		·	Ę	0.0
727	SAL_094	499	761215	5237050	2181	10	0	0	0	0	0	0	0	0	0	1	0	2003
728 729	SAL_095 SAL 097	1580 1263	761357 761952	5236971 5237452	2189 2173	10 10	0	0	0	0	0	0	0	0	0	1	0	2003
730	SAL_097 SAL 098	86502	761932	5237432	2201	0	10	0	0	0	0	0	10	0	0	0	1	2000
731	SAL 099	644	764132	5230037	2209	0	10	0	0	0	0	0	0	0	0	0	1	2000
732	SAL_100	422	764290	5230015	2208	0	10	0	0	0	0	0	0	0	0	0	1	2000
733	SAL_101	684	764376	5229996	2203	0	10	0	0	0	0	0	0	0	0	0	1	2000
734	SAL_102	548	764381	5230043	2202	0	10	0	0	0	0	0	0	0	0	0	1	2000
735	SAL_103	504	764503 764421	5230139	2192	0	10	0	0	0	0	0	10	0	0	0	1	2000
736 737	SAL_104 SAL 105	817 1613	764633	5230267 5229729	2188 2262	1 2	9	0	0	0	0	0	10 8	0	0	0	1	2000
738	SAL 106	1270	764748	5229745	2257	0	10	0	0	0	0	0	0	0	0	0	1	2000
739	SAL_107	272	764680	5229652	2260	0	10	0	0	0	0	0	0	0	0	0	1	2000
740	SAL_108	278	764687	5229567	2264	1	9	0	0	0	0	0	10	0	0	0	1	2000
741	SAL_109	1330	764816	5229471	2255	0	10	0	0	0	0	0	10	0	0	0	1	2000
742	SAL_110	327	764875	5229474	2248	1	9	0	0	0	0	0	0	0	0	0	1	2000
743 744	SAL_111 SAL 112	2004 46729	764896 765054	5229722 5229618	2243 2231	0 1	10 9	0	0	0	0	0	10	0	0	0	1	2000
744	SAL_112 SAL 113	41505	765633	5228597	2355	2	8	0	0	0	0	0	10	0	0	0	1	2000
746	SAL_114	681	766374	5228666	2545	8	2	0	0	0	0	0	0	0	0	1	0	2000
747	SAL_115	1431	766104	5229722	2741	3	7	0	0	0	0	0	10	0	0	0	1	2000
748	SAL_116	3239	765232	5230844	2385	3	7	0	0	0	0	0	10	0	0	0	1	2000
749	SAL_117	11089	768965	5226124	2413	10	0	0	0	0	0	0	8	1	0	0	0	2000
750 751	SAL_118 SAL 119	191793 8318	769101 769166	5226689 5227379	2256 2233	0 1	9	0	0	10	0	0	0	0	0	0	0	2000
751	SAL_119 SAL 120	404	767284	5237325	2087	10	0	0	0	0	0	0	0	0	0	1	0	2000
753	SAL_121	20952	769568	5233626	2092	10	0	0	0	0	0	0	10	0	0	1	0	2000
754	SAL_122	10895	769330	5231725	2350	3	7	0	0	0	0	0	0	0	0	0	1	2000
755	SAL_123	2090	769208	5231868	2348	3	7	0	0	0	0	0	0	0	0	0	1	2000
756	SAL_124	49401	770291	5227746	2276	0	0	0	0	10	0	0	0	0	0	0	0	2000
757 758	SAL_125 SAL 126	6809 901	770651 770395	5227524 5227960	2237 2289	2 7	8	0	0	0	0	0	0	0	1	0	0	2000
759	SAL_120	1417	770393	5227900	2447	10	0	0	0	0	0	0	0	1	0	0	0	2000
760	SAL 128	1763	771302	5227477	2355	2	8	0	0	0	0	0	6	0	1	0	0	2000
761	SAL_129	288	771550	5226997	2465	10	0	0	0	0	0	0	0	1	0	0	0	2000
762	SAL_130	741	773024	5229533	2555	1	9	0	0	0	0	0	0	0	1	0	0	2000
763	SAL_132	1141	774086	5227883	2326	4	6	0	0	0	0	0	0	0	0	0	1	2000
764 765	SAL_133 SAL_134	851 2809	774311 774779	5227659 5227552	2272 2053	10	0	0	0		0	0	0	0	0	0	0	2000
766	SAL_134	1079	773716		2572	3	7	0			0	0	0		1	0		2000
767	SAL_136	30136	773601	5227108	2569	3	7	0	0	_	0	0	0		1	0	0	2000
768	SAL_137	12350	773466	5226679	2520	3	7	0	0	0	0	10	10	0	1	0	0	2000
769	SAL_138	497	773633	5226660	2510	7	3	0			0	10	10	1	0	0	0	2000
770	SAL_139	589	773917	5226566	2442	10	0	0	0		10	10	10		0	0	0	2000
771 772	SAL_140 SAL 141	12363 416	773481 773381	5226407 5226475	2500 2505	2 8	8 2	0	0		10 5	10 10	10	0 1	1	0	0	2000
773	SAL_141	472931	774551	5226148	2199	0	0	0			0	10	0		0	0	0	2000
774	SAL_143	327	774798	5225255	2391	1	9	0	0	0	0	0	10	0	1	0	0	2000
775	SAL_144	1592	774794		2395	4	6	0			0	0	10		1	0	0	2000
776	SAL_146	3781	775020	5224646	2577	0	10	0	0		0	0	0		1	0	0	2000
777	SAL_147	1249	775169	5224987	2534	0	10	0	_		0	10	0	_	1	0	0	2000
778 779	SAL_148 SAL 149	1854348 17809	776234 777657	5228520 5228193	2007 2615	0 8	2	0	0		0	10 10	0	0 1	0	0	0	2000
780	SAL_149 SAL 150	26002	777770	5228670	2559	0	10	0		_	0	10	10		1	0	0	2000
781	SAL_151	638	777458	5229317	2499	1	9	0	0	0	0	0	8	0	0	0	1	2000
782	SAL_153	18718	776781	5230669		4	6	0			0	0	8	0	0	0	1	2000
783	SAL_154	6698	778494	5230500	2768	6	4	0	0	0	0	0	0	1	0	0	0	2000
784	SAL_155	379	778437	5230362	2771	2	8	0	0		0	0	10	_	1	0	0	2000
785 786	SAL_159 SAL 160	739 2602	777930 776874	5231631 5233350	2422 2294	9	1 2	0	0	0	0	0	10 10	0	0	1	0	2000
787	SAL_160 SAL 161	399	776781	5233454	2276	10	0	0			0	0	0		0	1	0	2000
788	SAL_162	287	776521	5233793	2235	10	0	0			0	0	0	0	0	1	0	2000
789	SAL_163	474	776520	5234669	2229	3	7	0		0	0	0	10	0	0	0	1	2000
790	SAL_164	395	776552	5234698	2232	3	7	0	0	0	0	0	0	0	0	0	1	2000
791	SAL_165	6095	776716		2211	4	6	0			0	0	10	0	0	0	1	2000
792	SAL_166	261	777187	5234960	2122	7	3	0	0	0	0	0	0	0	0	1	0	2000

		<u> </u>			l .							-			-	1		
					_	ra	dro	da	qs	hr	ct	dr	of	ora	_bedr	а		ar
⊆ੂ	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	pe-	far_mora	_bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake	lake_	gl_cc	<u>></u>	surf	lose	close	ar_r	far_t	oea
			×	>			19									·	Ę	0.0
793	ISE_001	3924	791346	5202246	2442	2	8	0	0	0	0	0	0	0	0	0	1	2000
794 795	ISE_002 ISE_003	378 306	788458 787984	5203481 5203544	2243 2125	10 10	0	0	0	0	0	0	0	0	0	1	0	2000
796	ISE_003	419	787913	5203344	2123	9	1	0	0	0	0	0	0	0	0	1	0	2000
797	ISE_006	1933	785402	5207062	2628	10	0	0	0	0	0	0	4	1	0	0	0	2000
798	ISE_007	888	785388	5206988	2621	9	1	0	0	0	0	0	0	1	0	0	0	2000
799	ISE_008	2970	785341	5207026	2613	8	2	0	0	0	0	0	6	1	0	0	0	2000
800	ISE_009	462	784317	5207571	2681	2	8	0	0	0	0	0	10	0	1	0	0	2000
801 802	ISE_010 ISE 011	1195 1343	784320 784271	5207208 5207168	2582 2586	3	6 7	0	0	0	0	0	10	0	1	0	0	2000
803	ISE 012	1038	784200	5207106	2582	6	4	0	0	0	0	0	8	1	0	0	0	2000
804	ISE_013	478	782754	5205389	2628	3	7	0	0	0	0	0	8	0	0	0	1	2000
805	ISE_014	1072	782756	5204892	2502	10	0	0	0	0	0	0	0	0	0	1	0	2000
806	ISE_016	941	784397	5204395	2292	2	8	0	0	0	0	0	0	0	0	0	1	2000
807	ISE_018	1779	785361	5202876	2228	10	0	0	0	0	0	0	0	0	0	1	0	2000
808 809	ISE_019 ISE 020	422 640	785006 785084	5201398 5201264	2581 2561	2	7 8	0	0	0	0	0	10	0	0	0	1	2000
810	ISE_020	1360	785304	5201264	2506	1	9	0	0	0	0	0	8	0	0	0	1	2000
811	ISE_022	10223	785843	5201165	2344	10	0	0	0	0	0	0	2	0	0	1	0	2000
812	ISE_023	424	786622	5200490	2481	1	9	0	0	0	0	0	0	0	0	0	1	2000
813	ISE_024	1125	786487	5200311	2473	4	6	0	0	0	0	0	10	0	0	0	1	2000
814	ISE_025	1125	786569	5200303	2465	4	6	0	0	0	0	0	10	0	0	0	1	2000
815 816	ISE_026 ISE 027	19773 411	786892 786974	5200296 5200194	2442 2438	0	10 10	0	0	0	0	0	10	0	0	0	1	2000
817	ISE 028	444	786922	5200134	2443	0	10	0	0	0	0	0	0	0	0	0	1	2000
818	ISE_029	20581	786806	5200112	2445	0	10	0	0	0	0	0	9	0	0	0	1	2000
819	ISE_030	1193	787010	5200067	2439	0	10	0	0	0	0	0	9	0	0	0	1	2000
820	ISE_031	2100	787035	5200141	2434	0	10	0	0	0	0	0	10	0	0	0	1	2000
821 822	ISE_032 ISE_033	1562 985	787070 786288	5200005 5200167	2435 2517	1 6	9	0	0	0	0	0	10	0	0	0 1	0	2000
823	ISE_033	262	787528	5199889	2360	0	10	0	0	0	0	0	0	0	0	0	1	2000
824	ISE 036	686	787746	5199783	2317	1	9	0	0	0	0	0	0	0	0	0	1	2000
825	ISE_037	1335	787711	5199678	2319	8	2	0	0	0	0	0	10	0	0	1	0	2000
826	ISE_038	1273	788989	5198678	2104	10	0	0	0	0	0	0	0	0	0	1	0	2000
827	ISE_040	16656	788164	5198097	2095	0	0	0	0	10	0	0	0	0	0	0	0	2000
828 829	ISE_041 ISE_042	9737 1477	784240 785001	5200350 5200581	2322 2609	1 6	9	0	0	0	0	0	8	0	0	0 1	0	2000
830	ISE 043	2887	783001	5200381	2428	_	7	0	_	-	0	0	10	0	0	0	-	2000
831	ISE_044	68100	784229	5201341	2433	1	9	0	0	0	0	0	10	0	0	0	1	2000
832	ISE_045	3814	784336	5202112	2692	3	7	0	0	0	0	0	10	0	0	0	1	2000
833	ISE_046	489	784390	5202072	2678	2	8	0	0	0	0	0	10	0	0	0	1	2000
834	ISE_047	3672	783719	5202140	2659	8	2	0	0		0	0	9	1	0	0	0	2000
835 836	ISE_048 ISE_049	4002 11887	783438 783539	5202329 5200511	2718 2272	9	0	0	0	_	0	0	10	0	0	0	0	2000
837	ISE_050	572	783647	5200753	2278	10	0	0			0	0	10	0	0	1	0	2000
838	ISE_051	489	783623	5200793	2278	10	0	0	0	0	0	0	10	0	0	1	0	2000
839	ISE_052	22914	783056	5202927	2727	0	10	0			0	0	10	0	1	0	0	2000
840	ISE_053	1775	782535	5203179	2529	10	0	0	0	0	0	0	0	1	0	0	0	2000
841 842	ISE_054 ISE 055	10223 2270	782502 781444	5204547 5204372	2585 2516	10	8	0	0	0	0	0	2	0	1	0	0	2000
843	ISE_055	692	781444	5204372	2249	10	0	0	0		0	0	0	0	0	1	0	2000
844	ISE_058	285	780754	5206095	2954	2	8	0			0	0	0	0	1	0	0	2000
845	ISE_061	437	782490	5210513	2698	4	6	0	0		0	0	10	0	0	0	1	2000
846	ISE_064	6783	781206	5210490	2620	10	0	0			0	0	10	0	0	1	0	2000
847	ISE_065	2474	781028	5210407	2608	10	0	0	0	0	0	0	10	0	0	1	0	2000
848 849	ISE_066 ISE_067	11636 581	783183 783310	5212185 5213015	2729 2648	7 4	3 6	0	0	0	0	0	10	0	0	0	0	2000
850	ISE_067	4578	783310	5213605	2482	9	1	0	0	_	0	0	10	0	0	1	0	2000
851	ISE_070	2611	777151	5220032	2565	1	9	0	0	0	0	0	10	0	1	0	0	2000
852	ISE_072	1592	774360	5220966	2313	10	0	0	0	0	0	0	0	0	0	1	0	2000
853	ISE_074	803	773631	5221388	2523	8	2	0			0	0	10	0	0	1	0	2000
854	ISE_075	16045	773949	5221834	2604	8	2	0	0		0	0	0	0	0	1	0	2000
855 856	ISE_077 ISE_078	1757 8312	773086 772440	5209995 5217155	2278 2709	10 10	0	0	0	0	0	0 10	10	0	0	0	0	2000
857	ISE_078	1606	772534	5217133	2709	10	0	0			0	10	10	1	0	0	0	2000
858	ISE_080	879	772470	5217322	2722	10	0	0	0		0	10	10	1	0	0	0	2000
		-		-	-													

		ı		Ī						1 1		1			r			
					_	ra	dro	da	qs	hr	ct	dr	of	ora	_bedr	а		ar
\Box	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	q_	far_mora	_bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake	lake_	gl_cc	<u>></u>	surf	lose	close_	ar_r	far_t	oea
			×	>		il.	ķ							٥		·	Ę	
859	ISE_081	498	771659	5216878	2655	6	4	0	0	0	0	0	0	0	0	1	0	2000
860 861	ISE_082 ISE_083	3056 908	770911 771232	5216761 5218057	2533 2824	3	7 10	0	0	0	0	0 10	10 10	0	1	0	0	2000
862	ISE_083	793	771151	5218037	2820	2	8	0	0	0	0	10	10	0	1	0	0	2000
863	ISE_085	427	771204	5218154	2827	3	7	0	0	0	0	10	10	0	1	0	0	2000
864	ISE_087	413	770804	5220068	2564	10	0	0	0	0	0	0	0	0	0	1	0	2000
865	ISE_088	2691	771535	5221970	2297	1	9	0	0	0	0	0	0	0	0	0	1	2000
866	ISE_089	364	771524	5222028	2293	1	9	0	0	0	0	0	0	0	0	0	1	2000
867 868	ISE_090 ISE 091	637 54914	771592 771762	5222115 5222367	2291 2286	0	9	0	0	0 10	0	0	10	0	0	0	0	2000
869	ISE 092	831	771515	5222548	2318	2	8	0	0	0	0	0	0	0	0	0	1	2000
870	ISE_093	443	771248	5222206	2222	2	8	0	0	0	0	0	0	0	0	0	1	2000
871	ISE_094	803	772057	5223599	2686	1	9	0	0	0	0	0	0	0	0	0	1	2000
872	ISE_095	421	772102	5223546	2670	1	9	0	0	0	0	0	0	0	0	0	1	2000
873	ISE_096	334	772072	5223474	2663	1	9	0	0	0	0	0	0	0	0	0	1	2000
874 875	ISE_097 ISE 098	657 400	771924 771751	5224332 5224640	2664 2646	3	10 7	0	0	0	0	10	10 8	0	1	0	0	2000
876	ISE_098	2708	771731	5225473	2413	10	0	0	0	0	0	0	8	0	0	1	0	2000
877	ISE_100	10855	770444	5224974	2370	2	8	0	0	0	0	0	10	0	0	0	1	2000
878	ISE_101	637	768480	5223988	2558	1	9	0	0	0	0	0	0	0	0	0	1	2000
879	ISE_102	3345	768210	5224422	2440	10	0	0	0	0	0	0	0	1	0	0	0	2000
880	ISE_103	665	768484 768445	5224386	2495	10	0	0	0	0	0	0	0	1	0	0	0	2000
881 882	ISE_104 ISE 105	1146 404	768445	5224587 5224568	2463 2448	10 10	0	0	0	0	0	0	0	1	0	0	0	2000
883	ISE 106	64058	768487	5224969	2426	2	8	0	0	0	0	10	10	0	1	0	0	2000
884	ISE_107	722	767932	5224636	2384	7	3	0	0	0	0	0	0	1	0	0	0	2000
885	ISE_108	28841	766828	5225850	2247	8	2	0	0	0	0	0	10	0	0	1	0	2000
886	ISE_109	1113	767030	5226417	2452	7	3	0	0	0	0	0	0	0	0	1	0	2000
887 888	ISE_110 ISE 111	15264 6257	766729 766701	5226373 5226960	2346 2547	2 1	8 9	0	0	0	0	0	10	0	0	0	1	2000
889	ISE 112	473	766664	5226939	2539	0	10	0	0	0	0	0	0	0	0	0	1	2000
890	ISE_113	423	766620	5226954	2536	0	10	0	0	0	0	0	10	0	0	0	1	2000
891	ISE_114	10912	766358	5226966	2503	8	2	0	0	0	0	0	10	0	0	1	0	2000
892	ISE_116	435	764686	5226202	2133	10	0	0	0	0	0	0	0	0	0	1	0	2000
893	ISE_118	360	764601	5226617	2055	10	0	0	0	0	0	0	0	0	0	1	0	2000
894 895	ISE_119 ISE 120	2159 37711	764878 763356	5228090 5227532	2375 2468	10	10	0	0	0	0	0	10	0	0	0	1	2000
896	ISE 121	4478	763525	5226687	2159		0	0		-	0	0	10	0	0	1	0	2000
897	ISE_122	5236	762638	5226172	2199	10	0	0	0	0	0	0	10	0	0	1	0	2000
898	ISE_123	2375	760583	5227210	2778	10	0	0			5	5	0		0	0	0	2003
899	ISE_124	2700	760480	5226853	2706	10	0	0	0	0	0	0	0		0	0	0	2003
900 901	ISE_125 ISE 126	408 412	759799 759808	5227044 5226929	2756 2735	2	7 8	0	0		0	0	0	0	1	0	0	2000
902	ISE 127	999	759854	5226875	2735	2	8	0	0		0	0	10	0	1	0	0	2000
903	ISE_128	980	759994	5226637	2670	1	9	0			0	0	8	0	1	0	0	2000
904	ISE_129	5526	757662	5226625	2578	9	1	0	0	0	0	10	10	1	0	0	0	2000
905	ISE_130	32610	757396		2493	1	9	0			5	10	10	0	1	0	0	2003
906 907	ISE_131 ISE 132	9134 573	757723 757720	5224503 5224275	2657 2629	0	10	0	0	0	0	0	10 10	0	0	0	1	2003
907	ISE_132 ISE 133	859	757720	5223643	2629	1	3	6	0		10	10	0	0	0	0	0	2003
909	ISE_134	2068	759887	5223701	2135	10	0	0	0		0	0	0		0	1	0	2003
910	ISE_135	4097	758883	5222387	2514	10	0	0	0	0	0	0	0	1	0	0	0	2003
911	ISE_136	13221	760315	5222651	2565	0	10	0	0		10	10	10	0	1	0	0	2003
912	ISE_137	29407	763815	5222910	2228	0	10	0			0	0	10	0	0	0	1	2003
913 914	ISE_138 ISE 139	3071 111981	763904 763684	5222563 5221978	2244 2519	10	10	0	0	0	0	0	10 10	0	0	1 0	0	2003
915	ISE_139	3608	763912	5221978	2519	1	9	0	0	0	0	0	10	0	0	0	1	2003
916	ISE_141	994	763993	5221037	2554	3	7	0	0	_	0	0	0		0	0	1	2000
917	ISE_142	260	764333	5221191	2544	1	9	0	0	0	0	0	0	0	0	0	1	2000
918	ISE_143	1358	764411	5221045	2510	1	9	0	0		0	0	9	0	0	0	1	2000
919	ISE_144	570 1591	764350	5220864	2507	0	10	0			0	10	10		0	0	1	2000
920 921	ISE_145 ISE 146	1581 2069	763894 765320	5220512 5220826	2635 2238	3	9 7	0	0	0	5 0	10	10	0	0	0	1	2003
921	ISE_140	1406	765910	5220082	2336	10	0	0	0	0	0	0	0	0	0	1	0	2000
923	ISE_148	47572	766062	5219654	2271	8	2	0	0	0	0	0	10	0	0	1	0	2000
924	ISE_149	3911	763987	5219472	2497	8	2	0	0	0	0	0	10	0	0	1	0	2000

		1		1	1													
					_	ra	dro	da	qs	hr	ct	dr	of	ora	glr	а		ar
\Box	a				elevation	_mora	_bedro	lake_iceda	_lands	_anthr	contact	gl_watsup	runof	close_mora	_bedr	far_mora	_bedr	goea_year
lake_	name	area			leva	lake_	lake_	ake_	lake_	lake_	oj_lg	<u>></u>	surf_	lose	close	ar_r	far_t	oea
<u></u>	2	В	×	>	Φ	19	li	l	ļ	į	60	60	S	C	S	Ę	Ę	50
925	ISE_150	1413	762007	5220568	2469	9	1	0	0	0	0	0	0	0	0	1	0	2003
926	ISE_151	1108	762382	5220728	2558	3	7	0	0	0	0	0	9	0	0	0	1	2003
927	ISE_152 ISE 153	379 768	762163	5220729	2521 2519	8	2 9	0	0	0	0	0	6 0	0	0	1	0	2003
928 929	ISE_153 ISE 154	768 4848	761896 761979	5220999 5221330	2519	1 6	4	0	0	0	0	0	0	0	0	0	0	2003
930	ISE 155	1187	761868	5221308	2566	2	8	0	0	0	0	0	0	0	0	0	1	2003
931	ISE_156	2593	762018	5221553	2582	2	8	0	0	0	0	0	10	0	0	0	1	2003
932	ISE_157	1520	762051	5221830	2610	10	0	0	0	0	0	0	0	1	0	0	0	2003
933	ISE_158	5947	762124	5221859	2614	10	0	0	0	0	0	0	0	1	0	0	0	2003
934	ISE_159	529	761271	5222078	2728	1	9	0	0	0	0	0	0	0	1	0	0	2003
935	ISE_161	1000	761162	5221707	2644	6	4	0	0	0	0	0	10	0	0	1	0	2003
936 937	ISE_162 ISE 163	6222 6499	760674 760611	5221862 5221080	2659 2432	10	9	0	0	0	0	0	10	0	1 0	0	0	2003
938	ISE 164	2430	760499	5221036	2432	10	0	0	0	0	0	0	0	0	0	1	0	2000
939	ISE 165	2719	760726	5220840	2413	10	0	0	0	0	0	0	10	0	0	1	0	2000
940	ISE_166	536	760779	5220868	2412	10	0	0	0	0	0	0	0	0	0	1	0	2000
941	ISE_167	572	760836	5220874	2409	10	0	0	0	0	0	0	10	0	0	1	0	2000
942	ISE_168	516	760947	5220943	2401	10	0	0	0	0	0	0	0	0	0	1	0	2000
943	ISE_169	3321	760929	5221043	2413	10	0	0	0	0	0	0	10	0	0	1	0	2000
944	ISE_170	547	759793	5221818	2668	10	0	0	0	0	0	0	10	0	0	1	0	2000
945 946	ISE_171 ISE 172	6405 1099	759163 759522	5220362 5220104	2759 2687	3	7	0	0	0	0	0	10	0	1 0	0	0	2000
946	ISE_172	436	759322	5220104	2688	10	0	0	0	0	0	0	0	0	0	1	0	2000
948	ISE 174	4076	759771	5219857	2628	2	8	0	0	0	0	0	10	0	0	0	1	2000
949	ISE 175	48123	757027	5217864	2663	8	2	0	0	0	0	0	10	1	0	0	0	2000
950	ISE_176	2038	755687	5219999	2984	0	10	0	0	0	10	10	10	0	1	0	0	2003
951	ISE_177	568	755498	5220053	3001	8	2	0	0	0	0	10	0	1	0	0	0	2003
952	ISE_178	279	755853	5219547	2837	1	9	0	0	0	10	10	10	0	1	0	0	2003
953	ISE_179	354	755114	5219053	2738	3	7	0	0	0	0	0	0	0	0	0	1	2000
954	ISE_180	285	754674	5218866	2684	10	0	0	0	0	0	0	0	0	0	1	0	2000
955 956	ISE_181 ISE 182	2141 29923	749122 749265	5216398 5216700	2438 2366	10 10	0	0	0	0	0	0 10	0	1	0	0	0	2003
957	ISE 183	3523	748233	5212963	2684	2	8	0	0	0	0	0	10	0	0	0	1	2003
958	ISE 184	3910	748244	5212805	2686	0	10	0	0	0	0	0	8	0	0	0	1	2003
959	ISE_185	16367	747954	5212792	2694	3	7	0	0	0	0	0	10	0	0	0	1	2003
960	ISE_186	1624	747169	5209454	2756	9	1	0	0	0	0	0	6	1	0	0	0	2003
961	ISE_187	32063	755686	5209295	2180	8	2	0	0	0	0	0	10	0	0	1	0	2003
962	ISE_188	1383	755717	5207902	2737	10	0	0		0	0	0	0	1	0	0	_	2003
963 964	ISE_189 ISE 190	2800 371	757620 759380	5205419 5204833	2403 2569	10 7	3	0	0	0	0	0	10	0	0	1	0	2003
965	ISE_190	328	759529	5204833	2468	10	0	0	0	0	0	0	0	0	0	1	0	2000
966	ISE 192	433	759720	5205022	2421	9	1	0	0	0	0	0	0	0	0	1	0	2000
967	ISE_193	5922	760076	5205348		10	0	0		0	0	0	10	0	0	1	0	2003
968	ISE_194	6179	761551	5206079	2339	10	0	0	0	0	0	0	10	0	0	1	0	2003
969	ISE_195	669	762958	5205603	2374	10	0	0		0	0	0	10	0	0	1	0	2003
970	ISE_196	1086	763570	5205658	2370	10	0	0	0	0	0	0	10	0	0	1	0	2003
971	ISE_197	3826	763941	5207428	2136	10	0	0	0	0	0	0	0	0	0	1	0	2003
972 973	ISE_198 ISE 199	515 10409	764290 766593	5205648 5205346	2414 2516	10	0 8	0		0	0	0	10	0	0	0	1	2003
974	ISE 200	497	767016	5205340	2617	2	8	0	0	0	0	0	0	0	0	0	1	2000
975	ISE_201	1492	766934	5205604	2516	3	7	0	0	0	0	0	0	0	0	0	1	2000
976	ISE_202	3210	767514	5205700	2480	1	9	0	0	0	0	0	9	0	0	0	1	2000
977	ISE_203	2485	767384	5205162	2483	3	7	0	0	0	0	0	4	0	0	0	1	2000
978	ISE_204	769	767559	5205218	2460	8	2	0		0	0	0	10	0	0	1	0	2000
979	ISE_205	2563	757674	5204387	2536	4	6	0	0	0	0	0	4	0	0	0	1	2000
980 981	ISE_206	12501 3625	757419 757283	5204420 5204428	2508 2511	6 6	4	0	0	0	0	0	10	0	0	1	0	2000
981	ISE_207 ISE 208	3625	757283	5204428	2483	6	4	0	0	0	0	0	10	0	0	1	0	2000
983	ISE 209	589	756724	5204302	2483	6	4	0	0	0	0	0	10	0	0	1	0	2000
984	ISE_210	1842	756732	5204460	2500	6	4	0	0	0	0	0	10	0	0	1	0	2000
985	ISE_211	2094	756629	5204544	2513	6	4	0	0	0	0	0	10	0	0	1	0	2000
986	ISE_212	2891	756489	5204449	2502	10	0	0	0	0	0	0	10	0	0	1	0	2000
987	ISE_213	1166	756790	5204185	2427	6	4	0	0	0	0	0	10	0	0	1	0	2000
988	ISE_214	1061	754335	5206698	2713	10	0	0	0	0	0	0	0	0	0	1	0	2003
989	ISE_215	1633	754490 754460		2660	10	0	0		0	0	0	2	0	0	1	0	2003
990	ISE_216	1180	754460	5206199	2632	10	0	0	0	0	0	0	0	0	0	1	0	2003

					I	r 1				1		Т			Т			
						ia	0	В	s	⊱	Ħ	а	JĘ	ra	늄			<u>_</u>
۵					elevation	lake_mora	lake_bedro	lake_iceda	lake_lands	_anthr	contact	gl_watsup	surf_runof	close_mora	close_bedr	far_mora	gl	goea_year
Q	ne	ø			vati	ا _ل ا		اح.	<u></u>	ان	CO	۸at	Į.	Se_	J,	Ĕ	_bedr	ام
lake_	name	area	×	>	e e	lake	lake	lake	lake	lake_		<u></u> I	sur	clos	Š	'a'	far	goe
991	ISE_217	2329	754589	5205807	2530	10	0	0	0	0	0	0	0	0	0	1	0	2003
992	ISE_218	4043	753606	5206164	2572	10	0	0	0	0	0	0	0	0	0	1	0	2003
993	ISE_219	1941	752949	5206838	2698	8	2	0	0	0	0	0	6	0	0	1	0	2003
994	ISE_220	2009	752868	5206694	2681	10	0	0	0	0	0	0	10	0	0	1	0	2003
995	ISE_221	9269	751171	5206472	2584	10	0	0	0	0	0	0	10	0	0	1	0	2003
996	ISE_222	666	751272	5206365	2574	10	0	0	0	0	0	0	0	0	0	1	0	2003
997	ISE_223	361	751208	5206161	2555	10	0	0	0	0	0	0	0	0	0	1	0	2003
998	ISE_224	1154	750983	5206015	2538	10	0	0	0	0	0	0	0	0	0	1	0	2003
999	ISE_225	1221	751480	5206030	2483	10	0	0	0	0	0	0	0	0	0	1	0	2003
1000	ISE_226	1288	751630	5206010	2465	10	0	0	0	0	0	0	0	0	0	1	0	2003
1001	ISE_227	15879	749651	5207252	2574	10	0	0	0	0	0	0	2	0	0	1	0	2003
1002	ISE_228	3302	749774	5207568	2595	3	7	0	0	0	0	0	8	0	0	0	1	2003
1003	ISE_230	8932	746743	5207709	2623	10	0	0	0	0	0	5	0	1	0	0	0	2003
1004	ISE_231	3023	746612	5207746	2618	10	0	0	0	0	0	5	0	1	0	0	0	2003
1005	ISE_232	600	743674	5210635	2922	3	7	0	0	0	0	0	10	0	1	0	0	2002
1006	ISE_233	1294	750618	5205071	2014	10	0	0	0	0	0	0	10	0	0	1	0	2003
1007	ISE_234	294	750704	5205004	2026	10	0	0	0	0	0	0	10	0	0	1	0	2003
1008	ISE_235	1616	749615	5203716	2575	10	0	0	0	0	0	0	0	0	0	1	0	2000
1009	ISE 236	86205	749373	5203752	2572	3	7	0	0	0	0	0	8	0	0	0	1	2000
1010	ISE 237	667	748059	5204996	2839	2	8	0	0	0	0	0	0	0	1	0	0	2003
1011	ISE 238	534	747958	5204805	2778	2	8	0	0	0	0	0	0	0	1	0	0	2000
1012	ISE 239	13511	748380	5204943	2795	2	8	0	0	0	0	0	10	0	1	0	0	2003
1013	ISE 240	17625	748484	5204719	2747	0	10	0	0	0	0	0	10	0	1	0	0	2000
1014	ISE 241	3522	748009	5204242	2556	7	3	0	0	0	0	0	10	0	0	1	0	2000
1015	ISE 242	644	747482	5204230	2696	3	7	0	0	0	0	0	2	0	0	0	1	2000
1016	ISE 243	385	747046	5206081	2719	0	10	0	0	0	0	0	0	0	0	0	1	2000
1017	ISE 244	5876	746995	5205966	2710	0	10	0	0	0	0	0	10	0	0	0	1	2000
1018	ISE 245	18489	745871	5206033	2577	2	8	0	0	0	0	0	10	0	0	0	1	2000
1019	ISE 246	2413	745510	5206977	2757	3	7	0	0	0	0	0	0	0	0	0	1	2000
1020	ISE 247	254	744996	5206938	2849	2	8	0	0	0	0	0	8	0	0	0	1	2000
1021	ISE 248	438	745299	5206714	2725	3	7	0	0	0	0	0	10	0	0	0	1	2000
1022	ISE 249	349	742698	5208918	2575	10	0	0	0	0	0	0	0	0	0	1	0	2000
1023	ISE 250	3026	739915	5209229	2607	10	0	0	0	0	0	0	10	0	0	1	0	2000
1024	ISE 251	3440	741648	5204541	2627	8	2	0	0	0	0	5	0	1	0	0	0	2000
1025	ISE 252	414	741423	5204034	2682	10	0	0	0	0	0	10	0	1	0	0	0	2000
1026	ISE 253	557	741555	5204045	2678	8	2	0	0	0	0	10	0	1	0	0	0	2000
1027	ISE 254	3301	741533	5204043	2670	3	7	0	0	0	0	10	10	0	1	0	0	2000
1027	ISE_255	2398	741693	5203912	2677	3	7	0	0	0	0	10	0	0	1	0	0	2000
1028	ISE 256	9637	741093	5203912	2667	4	6	0	0	0	10	10	2	0	1	0	0	2000
1029	ISE 257	2978	741780	5203696	2668	-	3	1	0	0	10	10	0	1	0	0	0	2000
1030	ISE 258	5060	741903	5203090	2670	2	6	2	0	0	10	10	10	0	1	0	0	2000
1031	ISE 259	3443	741702	5203711	2561	10	0	0	0	0	0	0	10	0	0	1	0	2000
1032	ISE 260	445	742509	5203300	2720	10	9	0	0	0	0	0	10	0	0	0	1	2000
1033	ISE 261	443	742309	5202900	2955	4	6	0	0	0	0	0	8	0	1	0	0	2000
1034	ISE 262	2340	741443	5202013	2425	3	7	0	0	0	0	0	10	0	0	0	1	2000
1035	ISE 263	464	743040	5199803	2423	3	7	0	0	0	0	0	0	0	0	0	1	2000
1036	ISE_263	1080	744722	5199803	2438		7	0	0	0	0	0	0	0	0	0	1	2000
1037	ISE_264	129794	744023	5199730	2438	4	6	0	0	0	0	0	0	0	0	0	1	2000
1038	ISE_265	6420	772258	5217255	2714	_	0	0	0	0	0	10	10	1	0	0	0	2003
1039	ISE_266	948	772740	5217255	2714	2	2	6	0	0	10	10	0	0	0	0	0	2000
1040	ISE_267	2660	772740	5218430	2692	10	0	0	0	0	0	0	0	0	0	1	0	2000
1041		3096			2859		8	0	0	0	0	0	0	0	1	0	0	
	ISE_269		753892	5207031		10				_	0	_	0			_	_	2003
1043	ISE_270	1253	753433 751015	5207872	2593	10	0	0	0	0		0	_	1	0	0	0	2003
1044	ISE_271	12132	751915	5207506	2865	2	8	0	0	0	0	0	10	0	1	0	0	2003
1045	ISE_272	8671	762994	5221853	2718	2	8	0	0	0	5	5	10	0	1	0	0	2000

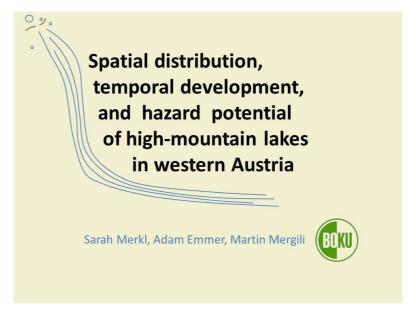
8.2 EGU General Assembly 2015 – Abstract

Spatial distribution and temporal development of high-mountain lakes in western Austria

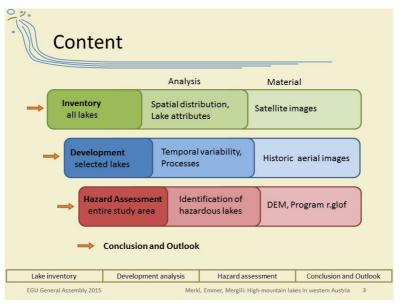
Sarah Merkl (1), Adam Emmer (1,2), Martin Mergili (1,3)

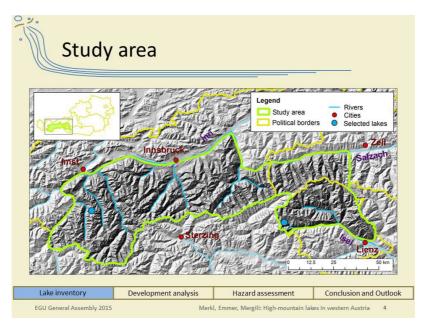
(1) BOKU University Vienna, Institute of Applied Geology, Vienna, Austria (martin.mergili@boku.ac.at), (2) Charles University Prague, Department of Physical Geography and Geoecology, Prague, Czech Republic, (3) University of Vienna, Department of Geography and Regional Research, Vienna, Austria

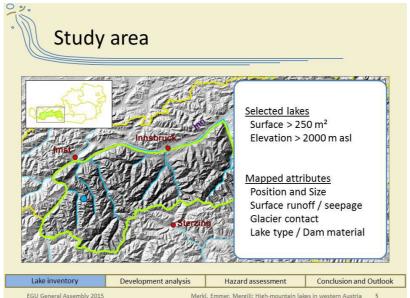
Glacierized high-mountain environments are characterized by active morphodynamics, favouring the rapid appearance and disappearance of lakes. On the one hand, such lakes indicate high-mountain environmental changes such as the retreat of glaciers. On the other hand, they are sometimes susceptible to sudden drainage, leading to glacial lake outburst floods (GLOFs) putting the downstream population at risk. Whilst high-mountain lakes have been intensively studied in the Himalayas, the Pamir, the Andes or theWestern Alps, this is not the case for the Eastern Alps. A particular research gap, which is attacked with the present work, concerns the western part of Austria.

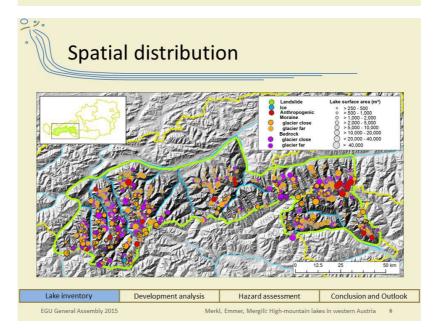

We consider a study area of approx. 6,140 km₂, covering the central Alps over most of the province of Tyrol and part of the province of Salzburg. All lakes _250 m₂ located higher than 2000 m asl are mapped from highresolution Google Earth imagery and orthophotos. The lakes are organized into seven classes: (i) ice-dammed; near-glacial (ii) moraine-dammed and (iii) bedrock-dammed; (iv) moraine-dammed and (v) bedrock dammed distant to the recent glaciers; (vi) landslide-dammed; (vii) anthropogenic. The temporal development of selected lakes is investigated in detail, using aerial photographs dating back to the 1950s.

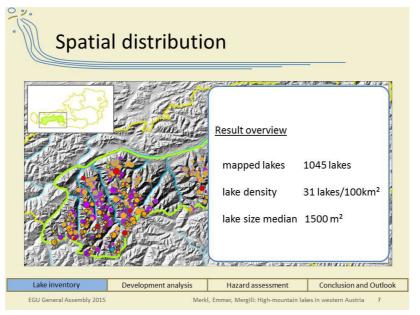
1045 lakes are identified in the study area. Only eight lakes are ice-dammed (i). One third of all lakes is located in the immediate vicinity of recent glacier tongues, half of them impounded by moraine (ii), half of them by bedrock (iii). Two thirds of all lakes are impounded by features (either moraines or bedrock) shaped by LIA or Pleistocenic glaciers at some distance to the present glacier tongues (iv and v). Only one landslide-dammed lake (vi) is identified in the study area, whilst 21 lakes are of anthropogenic origin (vii). 72% of all lakes are found at 2250–2750 m asl whilst less than 2% are found above 3000 m asl. The ratio of rock-dammed lakes increases with increasing elevation at the cost of moraine-dammed lakes.

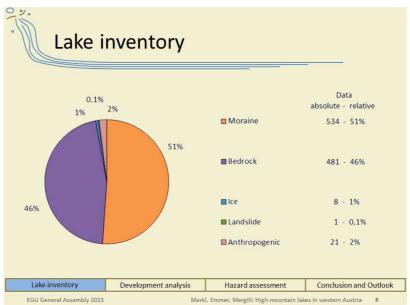

Multi-temporal analysis of selected near-glacial lakes reveals cases where lakes have appeared as proglacial lakes, but lost contact to the glacier within few decades or even years, or have even been decoupled from the glacial water supply. This goes hand in hand with rapid changes of lake shape and size, with merging or separating of lakes, and with the disappearance of short-lived lakes or lake systems.

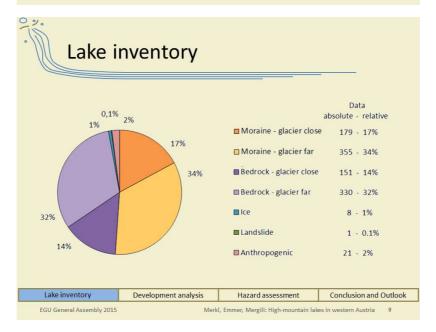

Consequently, we distinguish three stages of lake development: (a) a pro-glacial, (b) a periglacial and (c) a non-glacial stage. The dynamics – and also the susceptibility of a lake to sudden drainage – decrease substantially from (a) to (c). Lakes in the stages (a) and (b) are less prominent in our study area, compared to other glacierized high-mountain regions, leading us to the conclusion that (1) the current threat to the population by GLOFs is lower but (2) the future development of emerging lakes has to be monitored carefully.

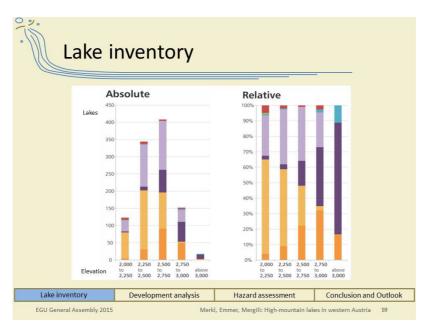

8.3 EGU General Assembly 2015 - Presentation

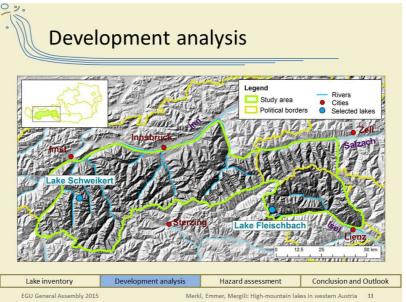


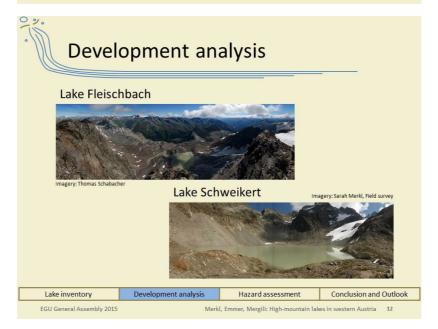


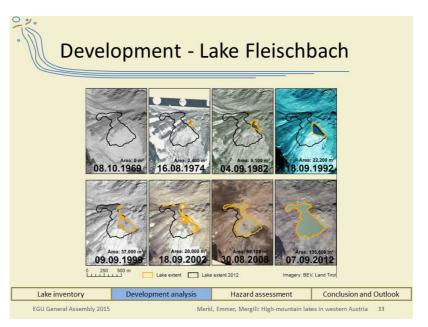


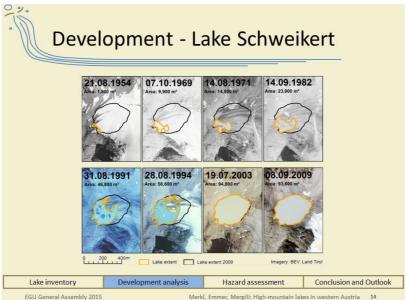


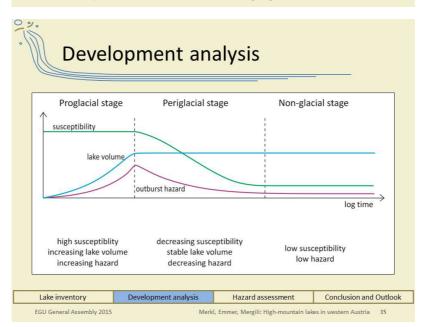


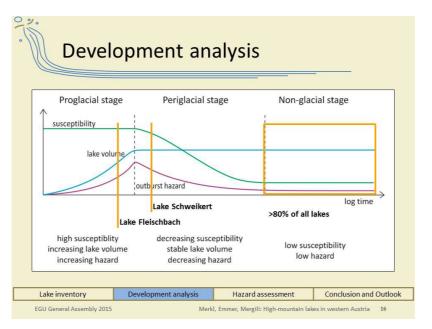


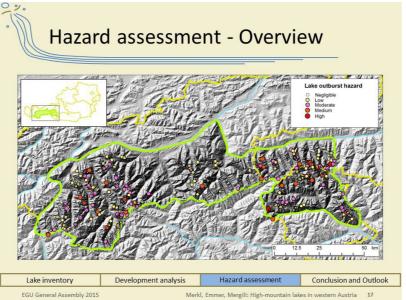


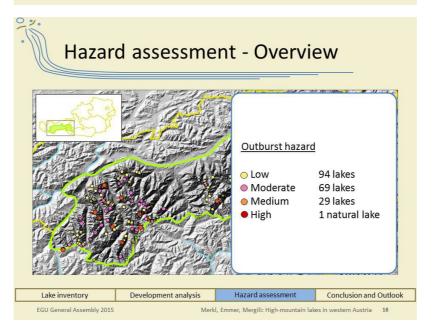


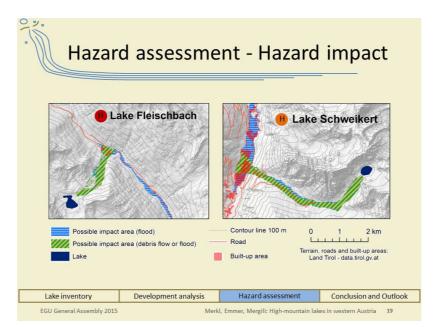












Conclusion and Outlook

- Currently few lakes in pro- and periglacial stage
- Further research on identified hazardous lakes

Hazard assessment Conclusion and Outlook

Merkl, Emmer, Mergili: High-mountain lakes in western Austria 21

• Emerging of new lakes has to be monitored

Development analysis

Lake inventory

EGU General Assembly 2015

EGU General Assembly 2015

Thank you for your attention!

Sarah Merkl, Adam Emmer, Martin Mergili
sarah.merkl@students.boku.ac.at